0000000000368437

AUTHOR

Tuhin Ghosh

showing 2 related works from this author

The Calderón problem for the fractional Schrödinger equation

2020

We show global uniqueness in an inverse problem for the fractional Schr\"odinger equation: an unknown potential in a bounded domain is uniquely determined by exterior measurements of solutions. We also show global uniqueness in the partial data problem where the measurements are taken in arbitrary open, possibly disjoint, subsets of the exterior. The results apply in any dimension $\geq 2$ and are based on a strong approximation property of the fractional equation that extends earlier work. This special feature of the nonlocal equation renders the analysis of related inverse problems radically different from the traditional Calder\'on problem.

Approximation propertyDimension (graph theory)35J10Disjoint sets01 natural sciences35J70Domain (mathematical analysis)inversio-ongelmatSchrödinger equationsymbols.namesakeMathematics - Analysis of PDEs0103 physical sciencesApplied mathematicsUniqueness0101 mathematicsMathematicsosittaisdifferentiaaliyhtälötNumerical AnalysisCalderón problemApplied Mathematics010102 general mathematicsInverse problem35R30approximation propertyBounded functionsymbolsinverse problem010307 mathematical physicsfractional Laplacianapproksimointi26A33Analysis
researchProduct

Uniqueness and reconstruction for the fractional Calder\'on problem with a single measurement

2020

We show global uniqueness in the fractional Calder\'on problem with a single measurement and with data on arbitrary, possibly disjoint subsets of the exterior. The previous work \cite{GhoshSaloUhlmann} considered the case of infinitely many measurements. The method is again based on the strong uniqueness properties for the fractional equation, this time combined with a unique continuation principle from sets of measure zero. We also give a constructive procedure for determining an unknown potential from a single exterior measurement, based on constructive versions of the unique continuation result that involve different regularization schemes.

Calderón problemFractional equations010102 general mathematicsSingle measurementDisjoint sets01 natural sciencesConstructivefunctional analysisNull setContinuationMathematics - Analysis of PDEsRegularization (physics)0103 physical sciencesApplied mathematics010307 mathematical physicsUniqueness0101 mathematicsfunktionaalianalyysiAnalysisMathematics
researchProduct