0000000000368442
AUTHOR
John R. Miller
FluorMODgui V3.0 : a graphic user interface for the spectral simulation of leaf and canopy chlorophyll fluorescence
The FluorMODgui Graphic User Interface (GUI) software package developed within the frame of the FluorMOD project Development of a Vegetation Fluorescence Canopy Model is presented in this manuscript. The FluorMOD project was launched in 2002 by the European Space Agency (ESA) to advance the science of vegetation fluorescence simulation through the development and integration of leaf and canopy fluorescence models based on physical methods. The design of airborne or space missions dedicated to the measurement of solar-induced chlorophyll fluorescence using remote-sensing instruments require physical methods for quantitative feasibility analysis and sensor specification studies. The FluorMODg…
Fluorescence explorer (FLEX): An optimised payload to map vegetation photosynthesis from space
The FLuorescence EXplorer (FLEX) mission proposes to launch a satellite for the global monitoring of steady-state chlorophyll fluorescence in terrestrial vegetation. Fluorescence is a sensitive probe of photosynthetic function in both healthy and physiologically perturbed vegetation, and a powerful non-invasive tool to track the status, resilience, and recovery of photochemical processes and moreover provides important information on overall photosynthetic performance with implications for related carbon sequestration. The early responsiveness of fluorescence to atmospheric, soil and plant water balance, as well as to atmospheric chemistry and human intervention in land usage makes it an ob…
Assessing Canopy PRI for Water Stress detection with Diurnal Airborne Imagery
Soil Moisture Experiments 2004 (SMEX04) Special Issue
Remote sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation: 50 years of progress
Remote sensing of solar-induced chlorophyll fluorescence (SIF) is a rapidly advancing front in terrestrial vegetation science, with emerging capability in space-based methodologies and diverse application prospects. Although remote sensing of SIF – especially from space – is seen as a contemporary new specialty for terrestrial plants, it is founded upon a multi-decadal history of research, applications, and sensor developments in active and passive sensing of chlorophyll fluorescence. Current technical capabilities allow SIF to be measured across a range of biological, spatial, and temporal scales. As an optical signal, SIF may be assessed remotely using high-resolution spectral sensors in …