0000000000368481
AUTHOR
Leong Chuan Kwek
Quasideterministic realization of a universal quantum gate in a single scattering process
We show that a flying particle, such as an electron or a photon, scattering along a one-dimensional waveguide from a pair of static spin-1/2 centers, such as quantum dots, can implement a CZ gate (universal for quantum computation) between them. This occurs quasi-deterministically in a single scattering event, hence with no need for any post-selection or iteration, {and} without demanding the flying particle to bear any internal spin. We show that an easily matched hard-wall boundary condition along with the elastic nature of the process are key to such performances.
Coherent superposition of current flows in an atomtronic quantum interference device
We consider a correlated Bose gas tightly confined into a ring shaped lattice, in the presence of an artificial gauge potential inducing a persistent current through it. A weak link painted on the ring acts as a source of coherent back-scattering for the propagating gas, interfering with the forward scattered current. This system defines an atomic counterpart of the rf-SQUID: the atomtronics quantum interference device (AQUID). The goal of the present study is to corroborate the emergence of an effective two-level system in such a setup and to assess its quality, in terms of its inner resolution and its separation from the rest of the many-body spectrum, across the different physical regime…