0000000000368787
AUTHOR
Olav Lysne
Combining congested-flow isolation and injection throttling in HPC interconnection networks
Existing congestion control mechanisms in interconnects can be divided into two general approaches. One is to throttle traffic injection at the sources that contribute to congestion, and the other is to isolate the congested traffic in specially designated resources. These two approaches have different, but non-overlapping weaknesses. In this paper we present in detail a method that combines injection throttling and congested-flow isolation. Through simulation studies we first demonstrate the respective flaws of the injection throttling and of flow isolation. Thereafter we show that our combined method extracts the best of both approaches in the sense that it gives fast reaction to congesti…
On the potential of NoC virtualization for multicore chips
As the end of Moores-law is on the horizon, power becomes a limiting factor to continuous increases in performance gains for single-core processors. Processor engineers have shifted to the multicore paradigm and many-core processors are a reality. Within the context of these multi-core chips, three key metrics point themselves out as being of major importance, performance, fault-tolerance (including yield), and power consumption. A solution that optimizes all three of these metrics is challenging. As the number of cores increases the importance of the interconnection network-on-chip (NoC) grows as well, and chip designers should aim to optimize these three key metrics in the NoC context as …