0000000000370936

AUTHOR

D. Miåkowiec

Pseudorapidity Density of Charged Particles inp+PbCollisions atsNN=5.02  TeV

The charged-particle pseudorapidity density measured over four units of pseudorapidity in nonsingle-diffractive p + Pb collisions at a center-of-mass energy per nucleon pair root s(NN) = 5.02 TeV is presented. The average value at midrapidity is measured to be 16.81 +/- 0.71 (syst), which corresponds to 2.14 +/- 0.17 (syst) per participating nucleon, calculated with the Glauber model. This is 16% lower than in nonsingle-diffractive pp collisions interpolated to the same collision energy and 84% higher than in d + Au collisions at root s(NN) = 0.2 TeV. The measured pseudorapidity density in p + Pb collisions is compared to model predictions and provides new constraints on the description of …

research product

Charged kaon femtoscopic correlations inppcollisions ats=7  TeV

Correlations of two charged identical kaons (KchKch) are measured in pp collisions at root s = 7 TeV by the ALICE experiment at the Large Hadron Collider (LHC). One-dimensional (KKch)-K-ch correlation functions are constructed in three multiplicity and four transverse momentum ranges. The (KKch)-K-ch femtoscopic source parameters R and lambda are extracted. The (KKch)-K-ch correlations show a slight increase of femtoscopic radii with increasing multiplicity and a slight decrease of radii with increasing transverse momentum. These trends are similar to the ones observed for pi pi and K-s(0) K-s(0) correlations in pp and heavy-ion collisions. However at high multiplicities, there is an indica…

research product

Transverse Momentum Distribution and Nuclear Modification Factor of Charged Particles inp+PbCollisions atsNN=5.02  TeV

The transverse momentum (pT) distribution of primary charged particles is measured in minimum bias (non-single-diffractive) p + Pb collisions at root(NN)-N-s = 5.02 TeV with the ALICE detector at the LHC. The pT spectra measured near central rapidity in the range 0.5< p(T) < 20 GeV/c exhibit a weak pseudorapidity dependence. The nuclear modification factor R-pPb is consistent with unity for p(T) above 2 GeV/c. This measurement indicates that the strong suppression of hadron production at high p(T) observed in Pb + Pb collisions at the LHC is not due to an initial-state effect. The measurement is compared to theoretical calculations. DOI: 10.1103/PhysRevLett.110.082302

research product