0000000000370952
AUTHOR
R. Krutokhvostov
SYNTHESIS AND CHARACTERIZATION OF SB-SUBSTITUTED (K0.5Na0.5)NbO3 PIEZOELECTRIC CERAMICS
ABSTRACT Lead-free piezoelectric ceramics (K0.5Na0.5)(Nb1-xSbx)O3+0.5 mol.%MnO2, where x = 0 ÷ 0.10, with single phase structure and rhombohedral symmetry at room temperature were prepared by conventional ceramic technology. The optimal sintering temperatures of compositions were within 1100°–1140°C. MnO2 functions as a sintering aid and effectively improves the densification. The samples reached density from 4.26 g/cm3 for undoped (K0.5Na0.5)NbO3 to 4.40 g/cm3 for Mn/Sb5+ co-doped ceramics. The co-effects of MnO2 doping and Sb5+ substitution lead to significant improvement in dielectric and piezoelectric properties: e at the Tc increased from 6000 (KNN) to 12400 (x = 0.04), d33 = 92 ÷ 192 …
Object size effect on the contact potential difference measured by scanning Kelvin probe method
International audience; Contact potential difference (CPD) was measured by macroscopic Kelvin probe instrument and scanning Kelvin probe microscope on Al, Ni and Pt on ITO substrates at ambient conditions. CPD values measured by scanning Kelvin probe microscope and macroscopic Kelvin probe are close within the error of about 10-30% for large studied objects, whereas scanning Kelvin probe microscope signal decreases, when the object size becomes smaller than 1.4 m. CPD and electric field signals measured using many-pass technique allowed us to estimate the influence of electrostatic field disturbance, especially, in the case of small objects.