0000000000371121
AUTHOR
J. Ullmann
New Nuclear Magnetic Moment of Bi209 : Resolving the Bismuth Hyperfine Puzzle
A recent measurement of the hyperfine splitting in the ground state of Li-like ${^{208}\mathrm{Bi}}^{80+}$ has established a ``hyperfine puzzle''---the experimental result exhibits a $7\ensuremath{\sigma}$ deviation from the theoretical prediction [J. Ullmann et al., Nat. Commun. 8, 15484 (2017); J. P. Karr, Nat. Phys. 13, 533 (2017)]. We provide evidence that the discrepancy is caused by an inaccurate value of the tabulated nuclear magnetic moment (${\ensuremath{\mu}}_{I}$) of $^{209}\mathrm{Bi}$. We perform relativistic density functional theory and relativistic coupled cluster calculations of the shielding constant that should be used to extract the value of ${\ensuremath{\mu}}_{I}(^{209…
High-voltage measurements on the 5 ppm relative uncertainty level with collinear laser spectroscopy
We present the results of high-voltage collinear laser spectroscopy measurements on the 5 ppm relative uncertainty level using a pump and probe scheme at the transition of involving the metastable state. With two-stage laser interaction and a reference measurement we can eliminate systematic effects such as differences in the contact potentials due to different electrode materials and thermoelectric voltages, and the unknown starting potential of the ions in the ion source. Voltage measurements were performed between −5 kV and −19 kV and parallel measurements with stable high-voltage dividers calibrated to 5 ppm relative uncertainty were used as a reference. Our measurements are compatible …