Irreversibility of the pressure-induced phase transition of quartz and the relation between three hypothetical post-quartz phases
Our atomistic computer simulations mainly based on classical force fields suggest that the pressure-induced transition from $\ensuremath{\alpha}$ quartz to quartz II at $21\phantom{\rule{0.3em}{0ex}}\mathrm{GPa}$ is irreversible. While quartz II is ferroelastic in principle, the transition itself is coelastic, as the shape of the newly formed crystal is determined by the handedness of $\ensuremath{\alpha}$-quartz. Upon releasing the pressure, our model quartz II remains stable down to $5\phantom{\rule{0.3em}{0ex}}\mathrm{GPa}$, where it undergoes an isosymmetric transformation into a less dense polymorph. If the classical force field model of quartz II is compressed quickly to $50\phantom{\…