0000000000372335

AUTHOR

Douglas W. Ming

showing 16 related works from this author

Geochemical properties of rocks and soils in Gusev Crater, Mars: Results of the Alpha Particle X-Ray Spectrometer from Cumberland Ridge to Home Plate

2008

Geochemical diversity of rocks and soils has been discovered by the Alpha Particle X-Ray Spectrometer (APXS) during Spirit’s journey over Husband Hill and down into the Inner Basin from sol 470 to 1368. The APXS continues to operate nominally with no changes in calibration or spectral degradation over the course of the mission. Germanium has been added to the Spirit APXS data set with the confirmation that it occurs at elevated levels in many rocks and soils around Home Plate. Twelve new rock classes and two new soil classes have been identified at the Spirit landing site since sol 470 on the basis of the diversity in APXS geochemistry. The new rock classes are Irvine (alkaline basalt…

Atmospheric ScienceOutcropSoil ScienceMineralogyPyroclastic rockMarsWeatheringAquatic ScienceAlpha particle X-ray spectrometerOceanographyImpact craterGeochemistry and PetrologyEarth and Planetary Sciences (miscellaneous)Earth-Surface ProcessesWater Science and TechnologygeochemistryBasaltEcologyPaleontologyForestrySoil classificationIgneous rockGeophysicsSpace and Planetary ScienceweatheringGeology
researchProduct

In situ and experimental evidence for acidic weathering of rocks and soils on Mars

2006

Experimental data for alteration of synthetic Martian basalts at pH=0-1 indicate that chemical fractionations at low pH are vastly different from those observed during terrestrial weathering. Rock analyses from Gusev crater are well described by the relationships apparent from low pH experimental alteration data. A model for rock surface alteration is developed which indicates that a leached alteration zone is present on rock surfaces at Gusev. This zone is not chemically fractionated to a large degree from the underlying rock interior, indicating that the rock surface alteration process has occurred at low fluid-to-rock ratio. The geochemistry of natural rock surfaces analyzed by APXS is c…

Atmospheric ScienceGeochemistrySoil ScienceMineralogyWeatheringAquatic Scienceengineering.materialOceanographychemistry.chemical_compoundGeochemistry and PetrologyEarth and Planetary Sciences (miscellaneous)Composition of MarsEarth-Surface ProcessesWater Science and TechnologyBasaltgeographyOlivinegeography.geographical_feature_categoryEcologyPaleontologySoil chemistryForestrySilicateVolcanic rockIgneous rockGeophysicschemistrySpace and Planetary ScienceengineeringGeologyJournal of Geophysical Research: Planets
researchProduct

Mineralogy at Gusev Crater from the Mössbauer spectrometer on the Spirit Rover.

2004

Mössbauer spectra measured on Mars by the Spirit rover during the primary mission are characterized by two ferrous iron doublets (olivine and probably pyroxene) and a ferric iron doublet (tentatively associated to nanophase ferric iron oxide). Two sextets resulting from nonstoichiometric magnetite are also present, except for a coating on the rock Mazatzal, where a hematite-like sextet is present. Greater proportions of ferric-bearing phases are associated with undisturbed soils and rock surfaces as compared to fresh rock surfaces exposed by grinding. The ubiquitous presence of olivine in soil suggests that physical rather than chemical weathering processes currently dominate at Gusev crat…

Geologic SedimentsMaterials scienceExtraterrestrial EnvironmentIronMineralogyMagnesium CompoundsMarsWeatheringPyroxeneengineering.materialFerric CompoundsFerrouschemistry.chemical_compoundSpectroscopy MossbauerImpact craterComposition of MarsMagnetiteMineralsMultidisciplinaryOlivineSilicatesOxidesHematiteFerrosoferric Oxidechemistryvisual_artvisual_art.visual_art_mediumengineeringIron CompoundsScience (New York, N.Y.)
researchProduct

Iron mineralogy and aqueous alteration from Husband Hill through Home Plate at Gusev Crater, Mars: Results from the Mössbauer instrument on the Spiri…

2008

[1] Spirit's Mossbauer (MB) instrument determined the Fe mineralogy and oxidation state of 71 rocks and 43 soils during its exploration of the Gusev plains and the Columbia Hills (West Spur, Husband Hill, Haskin Ridge, northern Inner Basin, and Home Plate) on Mars. The plains are predominantly float rocks and soil derived from olivine basalts. Outcrops at West Spur and on Husband Hill have experienced pervasive aqueous alteration as indicated by the presence of goethite. Olivine-rich outcrops in a possible mafic/ultramafic horizon are present on Haskin Ridge. Relatively unaltered basalt and olivine basalt float rocks occur at isolated locations throughout the Columbia Hills. Basalt and oliv…

Atmospheric ScienceGeochemistrySoil ScienceMineralogyWeatheringPyroxeneAquatic Scienceengineering.materialOceanographyGeochemistry and PetrologyUltramafic rockEarth and Planetary Sciences (miscellaneous)MarcasiteEarth-Surface ProcessesWater Science and TechnologyBasaltOlivineEcologyPaleontologyForestryPalagoniteGeophysicsSpace and Planetary ScienceengineeringMaficGeologyJournal of Geophysical Research
researchProduct

Indication of drier periods on Mars from the chemistry and mineralogy of atmospheric dust

2005

The cover shows part of the Larry's Lookout panorama, seen from the Mars Exploration Rover (MER) Spirit during its drive up Husband Hill: the summit is about 200 metres from the rover. Six papers this week report in detail on the MER mission. An Analysis compares predictions used to select a landing site with the conditions actually encountered. This ‘ground truth’ will be invaluable for interpreting future remote-sensing data. Surface chemistry suggests that the upper layer of soil may contain 1% meteoritic material. MER provides a unique glimpse of solar transits of the moons Phobos and Deimos. Rover Opportunity examined wind-related processes, and spectroscopy indicates a dry origin for …

Moons of MarsBasaltMultidisciplinaryImpact craterDust stormMineralogyContext (language use)Mars Exploration ProgramAtmosphere of MarsExploration of MarsAstrobiologyNature
researchProduct

Geochemical and mineralogical indicators for aqueous processes in the Columbia Hills of Gusev crater, Mars

2006

[1] Water played a major role in the formation and alteration of rocks and soils in the Columbia Hills. The extent of alteration ranges from moderate to extensive. Five distinct rock compositional classes were identified; the order for degree of alteration is Watchtower ≅ Clovis > Wishstone ≅ Peace > Backstay. The rover's wheels uncovered one unusual soil (Paso Robles) that is the most S-rich material encountered. Clovis class rocks have compositions similar to Gusev plains soil but with higher Mg, Cl, and Br and lower Ca and Zn; Watchtower and Wishstone classes have high Al, Ti, and P and low Cr and Ni; Peace has high Mg and S and low Al, Na, and K; Backstay basalts have high Na and K comp…

Atmospheric ScienceGeochemistrySoil ScienceMineralogyPyroxeneAquatic Scienceengineering.materialOceanographyFeldsparGeochemistry and PetrologyEarth and Planetary Sciences (miscellaneous)Composition of MarsAllophaneEarth-Surface ProcessesWater Science and TechnologyBasaltgeographygeography.geographical_feature_categoryOlivineEcologyPaleontologyForestryVolcanic rockGeophysicsSpace and Planetary Sciencevisual_artengineeringvisual_art.visual_art_mediumIlmeniteGeologyJournal of Geophysical Research: Planets
researchProduct

Diverse Lithologies and Alteration Events on the Rim of Noachian‐Aged Endeavour Crater, Meridiani Planum, Mars: In Situ Compositional Evidence

2018

We report the results of geological studies by the Opportunity Mars rover on the Endeavour Crater rim. Four major units occur in the region (oldest to youngest): the Matijevic, Shoemaker, Grasberg, and Burns formations. The Matijevic formation, consisting of fine‐grained clastic sediments, is the only pre‐Endeavour‐impact unit and might be part of the Noachian etched units of Meridiani Planum. The Shoemaker formation is a heterogeneous polymict impact breccia; its lowermost member incorporates material eroded from the underlying Matijevic formation. The Shoemaker formation is a close analog to the Bunte Breccia of the Ries Crater, although the average clast sizes are substantially larger in…

Meridiani Planum010504 meteorology & atmospheric sciencesLithologyNoachianGeochemistry010502 geochemistry & geophysics01 natural sciencesGeophysicsImpact craterSpace and Planetary ScienceGeochemistry and PetrologyClastic rockBrecciaEarth and Planetary Sciences (miscellaneous)HesperianVein (geology)Geology0105 earth and related environmental sciencesJournal of Geophysical Research: Planets
researchProduct

Nickel on Mars: Constraints on meteoritic material at the surface

2006

[1] Impact craters and the discovery of meteorites on Mars indicate clearly that there is meteoritic material at the Martian surface. The Alpha Particle X-ray Spectrometers (APXS) on board the Mars Exploration Rovers measure the elemental chemistry of Martian samples, enabling an assessment of the magnitude of the meteoritic contribution. Nickel, an element that is greatly enhanced in meteoritic material relative to samples of the Martian crust, is directly detected by the APXS and is observed to be geochemically mobile at the Martian surface. Correlations between nickel and other measured elements are used to constrain the quantity of meteoritic material present in Martian soil and sedimen…

MartianAtmospheric ScienceEcologyPaleontologySoil ScienceForestryMartian soilMars Exploration ProgramAquatic ScienceAlpha particle X-ray spectrometerOceanographyExploration of MarsAstrobiologyGeophysicsImpact craterMeteoriteSpace and Planetary ScienceGeochemistry and PetrologyMartian surfaceEarth and Planetary Sciences (miscellaneous)GeologyEarth-Surface ProcessesWater Science and TechnologyJournal of Geophysical Research: Planets
researchProduct

Search for magnetic minerals in Martian rocks: Overview of the Rock Abrasion Tool (RAT) magnet investigation on Spirit and Opportunity

2008

[1] The Rock Abrasion Tool (RAT) on board the Mars Exploration Rovers (MER) is a grinding tool designed to remove dust coatings and/or weathering rinds from rocks and expose fresh rock material. Four magnets of different strengths that are built into the structure of the RAT have been attracting substantial amounts of magnetic material during RAT activities from rocks throughout both rover missions. The RAT magnet experiment as performed on Spirit demonstrates the presence of a strongly ferrimagnetic phase in Gusev crater rocks, which based on Mossbauer and visible/near-infrared reflectance spectra is interpreted as magnetite. The amount of abraded rock material adhering to the magnets vari…

MartianAtmospheric ScienceEcologyPaleontologySoil ScienceMineralogyForestryWeatheringMars Exploration ProgramAquatic ScienceOceanographyAbrasion (geology)chemistry.chemical_compoundMagnetizationGeophysicschemistryImpact craterSpace and Planetary ScienceGeochemistry and PetrologyFerrimagnetismEarth and Planetary Sciences (miscellaneous)GeologyEarth-Surface ProcessesWater Science and TechnologyMagnetiteJournal of Geophysical Research
researchProduct

An integrated view of the chemistry and mineralogy of martian soils

2005

The mineralogical and elemental compositions of the martian soil are indicators of chemical and physical weathering processes. Using data from the Mars Exploration Rovers, we show that bright dust deposits on opposite sides of the planet are part of a global unit and not dominated by the composition of local rocks. Dark soil deposits at both sites have similar basaltic mineralogies, and could reflect either a global component or the general similarity in the compositions of the rocks from which they were derived. Increased levels of bromine are consistent with mobilization of soluble salts by thin films of liquid water, but the presence of olivine in analysed soil samples indicates that the…

Meridiani PlanumMultidisciplinaryOlivineSoil testMars Exploration RoverMineralogyWeatheringMartian soilengineering.materialmartian soilRocknestSoil waterengineeringComposition of Mars
researchProduct

Water alteration of rocks and soils on Mars at the Spirit rover site in Gusev crater

2005

The cover shows part of the Larry's Lookout panorama, seen from the Mars Exploration Rover (MER) Spirit during its drive up Husband Hill: the summit is about 200 metres from the rover. Six papers this week report in detail on the MER mission. An Analysis compares predictions used to select a landing site with the conditions actually encountered. This ‘ground truth’ will be invaluable for interpreting future remote-sensing data. Surface chemistry suggests that the upper layer of soil may contain 1% meteoritic material. MER provides a unique glimpse of solar transits of the moons Phobos and Deimos. Rover Opportunity examined wind-related processes, and spectroscopy indicates a dry origin for …

Volcanic rockBasaltMartiangeographyMultidisciplinarygeography.geographical_feature_categoryImpact craterLavaGeochemistryComposition of MarsMars Exploration ProgramRegolithNature
researchProduct

Pyroclastic Activity at Home Plate in Gusev Crater, Mars

2007

Home Plate is a layered plateau in Gusev crater on Mars. It is composed of clastic rocks of moderately altered alkali basalt composition, enriched in some highly volatile elements. A coarsegrained lower unit lies under a finer-grained upper unit. Textural observations indicate that the lower strata were emplaced in an explosive event, and geochemical considerations favor an explosive volcanic origin over an impact origin. The lower unit likely represents accumulation of pyroclastic materials, whereas the upper unit may represent eolian reworking of the same pyroclastic materials.

BasaltgeographyMultidisciplinarygeography.geographical_feature_categoryExplosive eruptionGeochemistryPyroclastic rockMineralogyVolcanic rockIgneous rockImpact craterPyroclastic surgeClastic rockGeologyScience
researchProduct

Evidence for montmorillonite or its compositional equivalent in Columbia Hills, Mars

2007

During its exploration of the Columbia Hills, the Mars Exploration Rover ‘‘Spirit’’ encountered several similar samples that are distinctly different from Martian meteorites and known Gusev crater soils, rocks, and sediments. Occurring in a variety of contexts and locations, these ‘‘Independence class’’ samples are rough-textured, iron-poor (equivalent FeO 4 wt%), have high Al/Si ratios, and often contain unexpectedly high concentrations of one or more minor or trace elements (including Cr, Ni, Cu, Sr, and Y). Apart from accessory minerals, the major component common to these samples has a compositional profile of major and minor elements whic…

Atmospheric ScienceGeochemistryMarsSoil ScienceMineralogymontmorilloniteAquatic ScienceOceanographychemistry.chemical_compoundImpact craterGeochemistry and PetrologyEarth and Planetary Sciences (miscellaneous)chemical compositionEarth-Surface ProcessesWater Science and TechnologyGusevMineralEcologyPaleontologyForestryColumbia HillsclayMars Exploration ProgramMars explorationSilicateGeophysicsMontmorilloniteMeteoritechemistrySpace and Planetary ScienceroverGusev CraterSoil horizonClay mineralsGeologyJournal of Geophysical Research
researchProduct

Identification of carbonate-rich outcrops on Mars by the Spirit rover.

2010

Ancient Carbonate Minerals on Mars The historical presence of liquid water on Mars together with a CO 2 -rich atmosphere should have resulted in the accumulation of large deposits of carbonate minerals. Yet, evidence for the presence of carbonates on the surface of Mars has been scarce. Using data collected by the Mars Exploration Rover, Spirit, Morris et al. (p. 421 , published online 3 June; see the Perspective by Harvey ) now present evidence for carbonate-rich outcrops in the Comanche outcrops within the Gusev crater. The carbonate is a major outcrop component and may have formed in the Noachian era (∼4 billion years ago) by precipitation from hydrothermal solutions that passed through …

MartianMultidisciplinaryWater on MarsExtraterrestrial EnvironmentAtmosphereClimateNoachianCarbonate mineralsCarbonatesTemperatureMarsWaterMars Exploration ProgramMeteoroidsCarbon DioxideAstrobiologychemistry.chemical_compoundImpact craterMeteoritechemistryCarbonateMagnesiumFerrous CompoundsSpacecraftGeologyScience (New York, N.Y.)
researchProduct

Mössbauer mineralogy of rock, soil, and dust at Meridiani Planum, Mars: Opportunity's journey across sulfate-rich outcrop, basaltic sand and dust, an…

2006

Additonal co-authors: P Gutlich, E Kankeleit, T McCoy, DW Mittlefehldt, F Renz, ME Schmidt, B Zubkov, SW Squyres, RE Arvidson

Meridiani PlanumAtmospheric ScienceOutcropGeochemistrySoil ScienceMineralogyPyroxeneAquatic Scienceengineering.materialOceanographyGeochemistry and PetrologyJarositeEarth and Planetary Sciences (miscellaneous)Earth-Surface ProcessesWater Science and TechnologyBasaltOlivineEcologyPaleontologyForestryMars Exploration ProgramHematiteGeophysicsSpace and Planetary Sciencevisual_artengineeringvisual_art.visual_art_mediumGeologyJournal of Geophysical Research: Planets
researchProduct

Alpha Particle X-Ray Spectrometer (APXS): Results from Gusev crater and calibration report

2006

The chemical composition of rocks and soils on Mars analyzed during the Mars Exploration Rover Spirit Mission was determined by X-ray analyses with the Alpha Particle X-Ray Spectrometer (APXS). Details of the data analysis method and the instrument calibration are presented. Measurements performed on Mars to address geometry effects and background contributions are shown. Cross calibration measurements among several instrument sensors and sources are discussed. An unintentional swap of the two flight instruments is evaluated. New concentration data acquired during the first 470 sols of rover Spirit in Gusev Crater are presented. There are two geological regions, the Gusev plains and the Col…

Meridiani PlanumAtmospheric Sciencegeographygeography.geographical_feature_categoryEcologyPaleontologySoil ScienceMineralogyForestryWeatheringMars Exploration ProgramAquatic ScienceAlpha particle X-ray spectrometerOceanographyVolcanic rockGeophysicsImpact craterSpace and Planetary ScienceGeochemistry and PetrologyRocknestEarth and Planetary Sciences (miscellaneous)Composition of MarsGeologyEarth-Surface ProcessesWater Science and TechnologyJournal of Geophysical Research: Planets
researchProduct