Heat shock factor 2 is a stress-responsive mediator of neuronal migration defects in models of fetal alcohol syndrome
Fetal alcohol spectrum disorder (FASD) is a frequent cause of mental retardation. However, the molecular mechanisms underlying brain development defects induced by maternal alcohol consumption during pregnancy are unclear. We used normal and Hsf2-deficient mice and cell systems to uncover a pivotal role for heat shock factor 2 (HSF2) in radial neuronal migration defects in the cortex, a hallmark of fetal alcohol exposure. Upon fetal alcohol exposure, HSF2 is essential for the triggering of HSF1 activation, which is accompanied by distinctive post-translational modifications, and HSF2 steers the formation of atypical alcohol-specific HSF1–HSF2 heterocomplexes. This perturbs the in vivo bindi…
Role of GATA-1 and HSP70 in the Dyserythropoiesis of Early Myelodysplastic Syndromes.
Abstract Abstract 3823 Poster Board III-759 Myelodysplastic syndromes (MDS) are heterogeneous hematopoietic stem cell disorders characterized by a hypercellular dysplastic bone marrow (BM) with peripheral blood cytopenias, mainly anemia. Early MDS with less than 10% BM blasts which belong in most cases to low and intermediate-1 (int-1) risk groups according to the International Prognostic Scoring System (IPSS), usually demonstrate dyserythropoiesis. The growth of erythroid progenitors is altered, with increased caspase activation leading to excessive cell death, and cellular dysplasia characterized, in liquid culture of CD34+-derived erythroid progenitors, by a delayed expression of the gly…
HSP27 controls GATA-1 protein level during erythroid cell differentiation.
AbstractHeat shock protein 27 (HSP27) is a chaperone whose cellular expression increases in response to various stresses and protects the cell either by inhibiting apoptotic cell death or by promoting the ubiquitination and proteasomal degradation of specific proteins. Here, we show that globin transcription factor 1 (GATA-1) is a client protein of HSP27. In 2 models of erythroid differentiation; that is, in the human erythroleukemia cell line, K562 induced to differentiate into erythroid cells on hemin exposure and CD34+ human cells ex vivo driven to erythroid differentiation in liquid culture, depletion of HSP27 provokes an accumulation of GATA-1 and impairs terminal maturation. More spec…
HSP90 and HSP70: Implication in Inflammation Processes and Therapeutic Approaches for Myeloproliferative Neoplasms.
Myeloproliferative neoplasms (MPN) are clonal stem cell disorders that lead to the excessive production of one or more blood cell lineages. It has been reported that, in most MPN, inflammatory cytokines are frequently increased, indicating that inflammation plays a crucial role in these disorders. Heat shock proteins (HSP) are induced in response to many stressful conditions from heat shock to hypoxia and inflammation. Besides their chaperone and cytoprotective functions, HSPs are key players during inflammation, hence the term “chaperokine.” Through their chaperone activity, HSP90, a stabilizer of many oncogenes (e.g., JAK2), and HSP70, a powerful antiapoptotic chaperone, tightly regulate …
Patients with colorectal tumors with microsatellite instability and large deletions in HSP110 T17 have improved response to 5-fluorouracil–based chemotherapy.
Background & Aims Patients with colorectal tumors with microsatellite instability (MSI) have better prognoses than patients with tumors without MSI, but have a poor response to 5-fluorouracil–based chemotherapy. A dominant-negative form of heat shock protein (HSP)110 (HSP110DE9) expressed by cancer cells with MSI, via exon skipping caused by somatic deletions in the T 17 intron repeat, sensitizes the cells to 5-fluorouracil and oxaliplatin. We investigated whether HSP110 T 17 could be used to identify patients with colorectal cancer who would benefit from adjuvant chemotherapy with 5-fluorouracil and oxaliplatin. Methods We characterized the interaction between HSP110 and HSP110DE9 using su…
Defective nuclear localization of Hsp70 is associated with dyserythropoiesis and GATA-1 cleavage in myelodysplastic syndromes.
Abstract Normal human erythroid cell maturation requests the transcription factor GATA-1 and a transient activation of caspase-3, with GATA-1 being protected from caspase-3–mediated cleavage by interaction with the chaperone heat shock protein 70 (Hsp70) in the nucleus. Erythroid cell dysplasia observed in early myelodysplastic syndromes (MDS) involves impairment of differentiation and excess of apoptosis with a burst of caspase activation. Analysis of gene expression in MDS erythroblasts obtained by ex vivo cultures demonstrates the down-regulation of a set of GATA-1 transcriptional target genes, including GYPA that encodes glycophorin A (GPA), and the up-regulation of members of the HSP70…
Implication of Heat Shock Factors in Tumorigenesis: Therapeutical Potential
International audience; Heat Shock Factors (HSF) form a family of transcription factors (four in mammals) which were named according to the discovery of their activation by a heat shock. HSFs trigger the expression of genes encoding Heat Shock Proteins (HSPs) that function as molecular chaperones, contributing to establish a cytoprotective state to various proteotoxic stresses and in pathological conditions. Increasing evidence indicates that this ancient transcriptional protective program acts genome-widely and performs unexpected functions in the absence of experimentally defined stress. Indeed, HSFs are able to re-shape cellular pathways controlling longevity, growth, metabolism and deve…
HSP27: A Therapeutic Target in Myelofibrosis
Abstract Myelofibrosis (MF) is the most aggressive myeloproliferative neoplasms (MPN) with the highest degree of morbidity and mortality, including progressive bone marrow fibrosis resulting into bone marrow failure. JAK2 kinase inhibitors have been successfully used for a few years in MPN and more particularly for MF treatment. Despite their beneficial effects on spleen size and symptoms, JAK2 inhibitors induce low molecular and survival responses underscoring the urgent need for other therapeutic approaches. Recently, heat shock protein 90 (HSP90) - known to stabilize JAK2 - has been reported as a promising therapeutic target in MPN. However HSP90 inhibitors show toxicity and induce the e…
Expression of a mutant HSP110 sensitizes colorectal cancer cells to chemotherapy and improves disease prognosis
Heat shock proteins (HSPs) are necessary for cancer cell survival. We identified a mutant of HSP110 (HSP110ΔE9) in colorectal cancer showing microsatellite instability (MSI CRC), generated from an aberrantly spliced mRNA and lacking the HSP110 substrate-binding domain. This mutant was expressed at variable levels in almost all MSI CRC cell lines and primary tumors tested. HSP110ΔE9 impaired both the normal cellular localization of HSP110 and its interaction with other HSPs, thus abrogating the chaperone activity and antiapoptotic function of HSP110 in a dominant-negative manner. HSP110ΔE9 overexpression caused the sensitization of cells to anticancer agents such as oxaliplatin and 5-fluorou…