6533b821fe1ef96bd127b037
RESEARCH PRODUCT
HSP27 controls GATA-1 protein level during erythroid cell differentiation.
Subramaniam SelvakumarSubramaniam SelvakumarJoan BoyesOlivier HermineArlette HammannArlette HammannDavid LanneauDavid LanneauMathilde BrunetMathilde BrunetGeneviève CourtoisEric SolaryEric SolaryJulie VandekerckhoveAurélie De ThonelAurélie De ThonelAnne Sophie GabetJ.-a. RibeilYael ZermatiSebastien MaurelSebastien MaurelAdonis HazouméAdonis HazouméCarmen GarridoCarmen Garridosubject
LeupeptinsPyridines[SDV]Life Sciences [q-bio]Cellular differentiationCellHSP27 Heat-Shock ProteinsAntigens CD34Biochemistryp38 Mitogen-Activated Protein Kinases0302 clinical medicineTransforming Growth Factor betahemic and lymphatic diseasesChlorocebus aethiopsGATA1 Transcription FactorPhosphorylationComputingMilieux_MISCELLANEOUSCells CulturedHeat-Shock Proteins0303 health sciencesbiologyImidazolesCell DifferentiationHematology[SDV] Life Sciences [q-bio]medicine.anatomical_structure030220 oncology & carcinogenesisembryonic structuresCOS CellsRNA InterferenceSignal transductionProteasome InhibitorsProtein BindingProteasome Endopeptidase ComplexImmunologyImmunoblotting03 medical and health sciencesHsp27Erythroid CellsHeat shock proteinmedicineAnimalsHumansTranscription factor030304 developmental biologyCell NucleusInterleukin-6UbiquitinationCell BiologyTransforming growth factor betaMolecular biologyChaperone (protein)biology.proteinK562 CellsHeLa CellsMolecular Chaperonesdescription
AbstractHeat shock protein 27 (HSP27) is a chaperone whose cellular expression increases in response to various stresses and protects the cell either by inhibiting apoptotic cell death or by promoting the ubiquitination and proteasomal degradation of specific proteins. Here, we show that globin transcription factor 1 (GATA-1) is a client protein of HSP27. In 2 models of erythroid differentiation; that is, in the human erythroleukemia cell line, K562 induced to differentiate into erythroid cells on hemin exposure and CD34+ human cells ex vivo driven to erythroid differentiation in liquid culture, depletion of HSP27 provokes an accumulation of GATA-1 and impairs terminal maturation. More specifically, we demonstrate that, in the late stages of the erythroid differentiation program, HSP27 is phosphorylated in a p38-dependent manner, enters the nucleus, binds to GATA-1, and induces its ubiquitination and proteasomal degradation, provided that the transcription factor is acetylated. We conclude that HSP27 plays a role in the fine-tuning of terminal erythroid differentiation through regulation of GATA-1 content and activity.
year | journal | country | edition | language |
---|---|---|---|---|
2010-07-08 | Blood |