0000000000372665
AUTHOR
Ferenc Iglói
The McCoy-Wu model in the mean-field approximation
We consider a system with randomly layered ferromagnetic bonds (McCoy-Wu model) and study its critical properties in the frame of mean-field theory. In the low-temperature phase there is an average spontaneous magnetization in the system, which vanishes as a power law at the critical point with the critical exponents $\beta \approx 3.6$ and $\beta_1 \approx 4.1$ in the bulk and at the surface of the system, respectively. The singularity of the specific heat is characterized by an exponent $\alpha \approx -3.1$. The samples reduced critical temperature $t_c=T_c^{av}-T_c$ has a power law distribution $P(t_c) \sim t_c^{\omega}$ and we show that the difference between the values of the critical…
Low-energy fixed points of random Heisenberg models
The effect of quenched disorder on the low-energy and low-temperature properties of various two- and three-dimensional Heisenberg models is studied by a numerical strong disorder renormalization group method. For strong enough disorder we have identified two relevant fixed points, in which the gap exponent, omega, describing the low-energy tail of the gap distribution, P(Delta) ~ Delta^omega is independent of disorder, the strength of couplings and the value of the spin. The dynamical behavior of non-frustrated random antiferromagnetic models is controlled by a singlet-like fixed point, whereas for frustrated models the fixed point corresponds to a large spin formation and the gap exponent …
Corner contribution to cluster numbers in the Potts model
For the two-dimensional Q-state Potts model at criticality, we consider Fortuin-Kasteleyn and spin clusters and study the average number N_Gamma of clusters that intersect a given contour Gamma. To leading order, N_Gamma is proportional to the length of the curve. Additionally, however, there occur logarithmic contributions related to the corners of Gamma. These are found to be universal and their size can be calculated employing techniques from conformal field theory. For the Fortuin-Kasteleyn clusters relevant to the thermal phase transition we find agreement with these predictions from large-scale numerical simulations. For the spin clusters, on the other hand, the cluster numbers are no…
Antiferromagnetic Heisenberg chains with bond alternation and quenched disorder
We consider S=1/2 antiferromagnetic Heisenberg chains with alternating bonds and quenched disorder, which represents a theoretical model of the compound CuCl_{2x}Br_{2(1-x)}(\gamma-{pic})_2. Using a numerical implementation of the strong disorder renormalization group method we study the low-energy properties of the system as a function of the concentration, x, and the type of correlations in the disorder. For perfect correlation of disorder the system is in the random dimer (Griffiths) phase having a concentration dependent dynamical exponent. For weak or vanishing disorder correlations the system is in the random singlet phase, in which the dynamical exponent is formally infinity. We disc…
Critical and tricritical singularities of the three-dimensional random-bond Potts model for large $q$
We study the effect of varying strength, $\delta$, of bond randomness on the phase transition of the three-dimensional Potts model for large $q$. The cooperative behavior of the system is determined by large correlated domains in which the spins points into the same direction. These domains have a finite extent in the disordered phase. In the ordered phase there is a percolating cluster of correlated spins. For a sufficiently large disorder $\delta>\delta_t$ this percolating cluster coexists with a percolating cluster of non-correlated spins. Such a co-existence is only possible in more than two dimensions. We argue and check numerically that $\delta_t$ is the tricritical disorder, which se…