0000000000372845

AUTHOR

Juan Gómez-sanchís

Approaching sales forecasting using recurrent neural networks and transformers

Accurate and fast demand forecast is one of the hot topics in supply chain for enabling the precise execution of the corresponding downstream processes (inbound and outbound planning, inventory placement, network planning, etc). We develop three alternatives to tackle the problem of forecasting the customer sales at day/store/item level using deep learning techniques and the Corporaci\'on Favorita data set, published as part of a Kaggle competition. Our empirical results show how good performance can be achieved by using a simple sequence to sequence architecture with minimal data preprocessing effort. Additionally, we describe a training trick for making the model more time independent and…

research product

Application of deep convolutional neural networks for the detection of anthracnose in olives using VIS/NIR hyperspectral images

Anthracnose is one of the primary diseases that affect olive production before and after harvest, causing severe damage and economic losses. The objective of this work is to detect this disease in the early stages, using hyperspectral images and advanced modelling techniques of Deep Learning (DL) and convolutional neural networks (CNN). The olives were artificially inoculated with the fungus. Hyperspectral images (450–1050 nm) of each olive were acquired until visual symptoms of the disease were observed, in some cases up to 9 days. The olives were classified into two classes: control, inoculated with water, and fungi composed of olives inoculated with the fungus. The ResNet101 architecture…

research product