0000000000372919

AUTHOR

Yosuke Hashimoto

0000-0003-3193-9005

All-Optical Storage of Phase-Sensitive Quantum States of Light.

We experimentally demonstrate storage and on-demand release of phase-sensitive, photon-number superposition states of the form $\alpha |0\rangle + \beta e^{i\theta} |1\rangle$ for an optical quantized oscillator mode. For this purpose, we introduce a phase-probing mechanism to a storage system composed of two concatenated optical cavities, which was previously employed for storage of phase-insensitive single-photon states [Phys. Rev. X 3, 041028 (2013)]. This is the first demonstration of all-optically storing highly nonclassical and phase-sensitive quantum states of light. The strong nonclassicality of the states after storage becomes manifest as a negative region in the corresponding Wign…

research product

Phase Locking between Two All-Optical Quantum Memories.

Optical approaches to quantum computation require the creation of multi-mode photonic quantum states in a controlled fashion. Here we experimentally demonstrate phase locking of two all-optical quantum memories, based on a concatenated cavity system with phase reference beams, for the time-controlled release of two-mode entangled single-photon states. The release time for each mode can be independently determined. The generated states are characterized by two-mode optical homodyne tomography. Entanglement and nonclassicality are preserved for release-time differences up to 400 ns, confirmed by logarithmic negativities and Wigner-function negativities, respectively.

research product

Synchronization of optical photons for quantum information processing

We observe the Hong-Ou-Mandel interference via homodyne tomography on two photons extracted from two quantum memories.

research product

Generation of two-mode quantum states of light with timing controllable memories

We created and experimentally verified two-mode entangled states of light, α|0,1⟩ + βe*+|1,0⟩, by means of two phase-sensitive optical quantum memories. The release timing of each optical mode can be independently controlled for up to 400 ns.

research product

Observation of high-purity single photons hopping between optical cavities

We experimentally demonstrate high-purity single photons hopping coherently between coupled optical cavities. The system shows high performance also as a controllable single-photon source, which emits single photons with a negative Wigner function.

research product

All-optical storage of a qubit encoded in an oscillator

The efficient and reliable storage of quantum states plays a crucial role for the realization of quantum computation and communication. For example, in linear optics quantum computation as represented by the KLM scheme [1], quantum storage enables one to store intermediate “results” or to boost scalability and reliability of the computation. To employ quantum storage for quantum computation, the storage should be applicable to superposition states, including phase information of the superposition as well as the amplitude information of the state's coefficients. Some schemes exist for such storage using electron or nuclear spins [2]. However, an all-optical storage without the use of atoms o…

research product

Optical quantum information processing and storage

Here we report our recent experimental progresses in optical quantum information processing. In particular, the following topics are included. First, we extend the heralding scheme to multi-mode states and demonstrate heralded creation of qutrit states. Next, we demonstrate storage of single-photon states and synchronized release of them. Then, we demonstrate real-time acquisition of quadrature values of heralded states by making use of an exponentially rising shape of wave-packets. Finally, we demonstrate cluster states in an arbitrarily long chain in the longitudinal direction.

research product

Characterization of Hong-Ou-Mandel bunched states by quantum homodyne tomography

We experimentally demonstrate quantum homodyne tomography of Hong-Ou-Mandel bunched states, which are created by dynamically adjusting emission timings of two heralded single photons using coupled cavities.

research product

Effects of small interfering RNAs targeting fascin on human esophageal squamous cell carcinoma cell lines

Abstract Background Fascin induces membrane protrusions and cell motility. Fascin overexpression was associated with poor prognosis, and its downregulation reduces cell motility and invasiveness in esophageal squamous cell carcinoma (ESCC). Using a stable knockdown cell line, we revealed the effect of fascin on cell growth, cell adhesion and tumor formation. Methods We examined whether fascin is a potential target in ESCC using in vitro and in vivo studies utilizing a specific siRNA. We established a stable transfectant with downregulated fascin from KYSE170 cell line. Results The fascin downregulated cell lines showed a slower growth pattern by 40.3% (p In vivo, the tumor size was signific…

research product