0000000000372921

AUTHOR

Fumiya Okamoto

showing 4 related works from this author

All-Optical Storage of Phase-Sensitive Quantum States of Light.

2019

We experimentally demonstrate storage and on-demand release of phase-sensitive, photon-number superposition states of the form $\alpha |0\rangle + \beta e^{i\theta} |1\rangle$ for an optical quantized oscillator mode. For this purpose, we introduce a phase-probing mechanism to a storage system composed of two concatenated optical cavities, which was previously employed for storage of phase-insensitive single-photon states [Phys. Rev. X 3, 041028 (2013)]. This is the first demonstration of all-optically storing highly nonclassical and phase-sensitive quantum states of light. The strong nonclassicality of the states after storage becomes manifest as a negative region in the corresponding Wign…

PhysicsQuantum Physicsbusiness.industryPhase (waves)FOS: Physical sciencesGeneral Physics and AstronomyOptical storage01 natural sciencesSuperposition principleQuantum statePhase spaceQuantum mechanicsQubit0103 physical sciencesComputer data storageWigner distribution functionQuantum Physics (quant-ph)010306 general physicsbusinessPhysical review letters
researchProduct

Phase Locking between Two All-Optical Quantum Memories.

2020

Optical approaches to quantum computation require the creation of multi-mode photonic quantum states in a controlled fashion. Here we experimentally demonstrate phase locking of two all-optical quantum memories, based on a concatenated cavity system with phase reference beams, for the time-controlled release of two-mode entangled single-photon states. The release time for each mode can be independently determined. The generated states are characterized by two-mode optical homodyne tomography. Entanglement and nonclassicality are preserved for release-time differences up to 400 ns, confirmed by logarithmic negativities and Wigner-function negativities, respectively.

PhysicsQuantum PhysicsMulti-mode optical fiberbusiness.industryPhase (waves)FOS: Physical sciencesPhysics::OpticsGeneral Physics and AstronomyQuantum entanglement01 natural sciencesDirect-conversion receiverQuantum stateQuantum mechanics0103 physical sciencesPhotonicsQuantum Physics (quant-ph)010306 general physicsbusinessQuantumQuantum computerPhysical review letters
researchProduct

Generation of two-mode quantum states of light with timing controllable memories

2020

We created and experimentally verified two-mode entangled states of light, α|0,1⟩ + βe*+|1,0⟩, by means of two phase-sensitive optical quantum memories. The release timing of each optical mode can be independently controlled for up to 400 ns.

PhysicsMode (statistics)02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesMultiplexingQuantum memory010309 opticsQuantum stateQuantum mechanics0103 physical sciences0210 nano-technologyQuantumQuantum computerCoherence (physics)Conference on Lasers and Electro-Optics
researchProduct

Optical quantum information processing and storage

2018

Here we report our recent experimental progresses in optical quantum information processing. In particular, the following topics are included. First, we extend the heralding scheme to multi-mode states and demonstrate heralded creation of qutrit states. Next, we demonstrate storage of single-photon states and synchronized release of them. Then, we demonstrate real-time acquisition of quadrature values of heralded states by making use of an exponentially rising shape of wave-packets. Finally, we demonstrate cluster states in an arbitrarily long chain in the longitudinal direction.

010309 opticsQuantum opticsPhysics0103 physical sciencesStatistical physicsQuantum entanglementQutrit010306 general physicsQuantum information processing01 natural sciencesLong chainQuadrature (astronomy)Longitudinal directionQuantum Communications and Quantum Imaging XVI
researchProduct