Rank two aCM bundles on the del Pezzo fourfold of degree 6 and its general hyperplane section
International audience; In the present paper we completely classify locally free sheaves of rank 2 with vanishing intermediate cohomology modules on the image of the Segre embedding $\mathbb{P}^2$ x $\mathbb{P}^2 \subseteq \mathbb{P}^8$ and its general hyperplane sections.Such a classification extends similar already known results regarding del Pezzo varieties with Picard numbers 1 and 3 and dimension at least 3.
Moduli spaces of rank two aCM bundles on the Segre product of three projective lines
Let P^n be the projective space of dimension n on an algebraically closed field of characteristic 0 and F be the image of the Segre embedding of P^1xP^1xP^1 inside P^7. In the present paper we deal with the moduli spaces of locally free sheaves E on F of rank 2 with h^i(F,E(t))=0 for i=1,2 and each integer t.