0000000000373280
AUTHOR
Dagmar Lackinger
Effect of ultraviolet light, methyl methanesulfonate and ionizing radiation on the genotoxic response and apoptosis of mouse fibroblasts lacking c-Fos, p53 or both
c-Fos and p53 are DNA damage-inducible proteins that are involved in gene regulation, cell cycle checkpoint control and cell proliferation following exposure to genotoxic agents. To investigate comparatively the role of c-Fos and p53 in the maintenance of genomic stability and the induction of apoptosis, we generated mouse fibroblast cell lines from knockout mice deficient for either c-fos (fos -/-) or p53 (p53-/-) or for both gene products (fosp53-/-). The sensitivity of these established cell lines was compared with the corresponding wild-type cells as to the cytotoxic, clastogenic and apoptosis-inducing effects of ultraviolet (UV-C) light and methyl methanesulfonate (MMS). Additionally, …
Primary mouse fibroblasts deficient for c-Fos, p53 or for both proteins are hypersensitive to UV light and alkylating agent-induced chromosomal breakage and apoptosis
The important regulatory proteins, c-Fos and p53 are induced by exposure of cells to a variety of DNA damaging agents. To investigate their role in cellular defense against genotoxic compounds, we comparatively analysed chromosomal aberrations and apoptosis induced by ultraviolet (UV-C) light and the potent alkylating agent methyl methanesulfonate (MMS) in primary diploid mouse fibroblasts knockout for either c-Fos or p53, or double knockout for both genes. We show that c-Fos and p53 deficient fibroblasts are more sensitive than the corresponding wild-type cells as to the induction of chromosomal aberrations and apoptosis. Double knockout fibroblasts lacking both c-Fos and p53 are viable an…