0000000000373749

AUTHOR

Z. Marka

showing 7 related works from this author

IceCube search for neutrinos coincident with compact binary mergers from LIGO-Virgo's first gravitational-wave transient catalog

2020

Using the IceCube Neutrino Observatory, we search for high-energy neutrino emission coincident with compact binary mergers observed by the LIGO and Virgo gravitational-wave (GW) detectors during their first and second observing runs. We present results from two searches targeting emission coincident with the sky localization of each GW event within a 1000 s time window centered around the reported merger time. One search uses a model-independent unbinned maximum-likelihood analysis, which uses neutrino data from IceCube to search for pointlike neutrino sources consistent with the sky localization of GW events. The other uses the Low-Latency Algorithm for Multi-messenger Astrophysics, which …

010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsBayesian7. Clean energy01 natural sciencesNeutrino astronomy; High energy astrophysics; Gravitational waveslocalizationIceCubeIceCube Neutrino ObservatoryGravitational wavesparticle source [neutrino]0103 physical sciencesLIGO010303 astronomy & astrophysics0105 earth and related environmental sciencesastro-ph.HEHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsGravitational wavegravitational radiationAstrophysics::Instrumentation and Methods for AstrophysicsAstronomy and AstrophysicsLIGOobservatorymessengerMassless particleVIRGONeutrino detector13. Climate actionSpace and Planetary ScienceNeutrino astronomycompact [binary]Physique des particules élémentairesddc:520High Energy Physics::ExperimentNeutrino astronomyNeutrinoAstrophysics - High Energy Astrophysical PhenomenaHigh energy astrophysicsLepton
researchProduct

Search for intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network

2019

Gravitational wave astronomy has been firmly established with the detection of gravitational waves from the merger of ten stellar mass binary black holes and a neutron star binary. This paper reports on the all-sky search for gravitational waves from intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network. The search uses three independent algorithms: two based on matched filtering of the data with waveform templates of gravitational wave signals from compact binaries, and a third, model-independent algorithm that employs no signal model for the incoming signal. No intermediate mass black hole binary event was detected in this sear…

binary: massneutron star: binaryAstronomybinary: angular momentumAstrophysicsdetector: network01 natural sciencesGeneral Relativity and Quantum CosmologyPhysics Particles & FieldsLIMITSclustersLIGOgravitational waveGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)QCQBastro-ph.HEPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Settore FIS/01black hole: spinPhysicsintermediate mass black hole binarieNumerical relativityGeneral relativitygravitational wavesgravitational waves; intermediate mass black hole binaries; Advanced LIGO and VirgoPhysical Sciences[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Astrophysics - High Energy Astrophysical PhenomenastarsGeneral relativitygr-qcAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesalternative theories of gravitySTARS; CLUSTERS; LIMITSAstrophysics::Cosmology and Extragalactic AstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)Astronomy & Astrophysicsgravitational radiation: direct detectionGeneral Relativity and Quantum CosmologySettore FIS/05 - Astronomia e AstrofisicaBinary black hole0103 physical sciencesddc:530010306 general physicsAstrophysics::Galaxy AstrophysicsSTFCScience & Technology010308 nuclear & particles physicsGravitational waveAdvanced LIGO and Virgointermediate mass black hole binariesRCUKGravitational Wave Physicsblack hole: massMass ratiobinary: compact04.80.NnLIGOgravitational radiation detectorNeutron starVIRGOblack hole: binaryIntermediate-mass black holerelativity theorygravitational radiation: emission95.55.Ymmass ratioDewey Decimal Classification::500 | Naturwissenschaften::530 | Physik07.05.Kflimits[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]CLUSTERSSTARSGravitational waves Black holes (astronomy) Gravitational self force
researchProduct

A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007

2013

A search for high-energy neutrinos coming from the direction of the Sun has been performed using the data recorded by the ANTARES neutrino telescope during 2007 and 2008. The neutrino selection criteria have been chosen to maximize the selection of possible signals produced by the self-annihilation of weakly interacting massive particles accumulated in the centre of the Sun with respect to the atmospheric background. After data unblinding, the number of neutrinos observed towards the Sun was found to be compatible with background expectations. The 90% CL upper limits in terms of spin-dependent and spin-independent WIMP-proton cross-sections are derived and compared to predictions of two sup…

AstrofísicaEXPLOSIONSHigh energyPhotonPOINT SOURCESSUPERCONDUCTING COSMIC STRINGSGravitational waves / experimentsGravitational waves/experimentsAstrophysics01 natural scienceshigh energy neutrinosgravitational wavesgravitational waves / experiment010303 astronomy & astrophysicsQCmedia_commonLine (formation)QBPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)GAMMA-RAY BURSTSdark matter detectorsGravitational waves / experiments; Neutrino astronomy; Astronomy and Astrophysicshigh energy neutrinos[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Settore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for Astrophysicsgravitational waves; gravitational waves / experiments; neutrino astronomy; high energy neutrinos; high energy neutrinosgravitational wavesgravitational wavesparticle physics - cosmology connectionNeutrino astronomyCOSMIC STRINGSRELATIVISTIC JETSNeutrinoAstrophysics - High Energy Astrophysical Phenomenasupersymmetry and cosmology[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]gravitational waves / experiments; neutrino astronomyTELESCOPEmedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaSCIENCE RUNFOS: Physical sciencesddc:500.2GAMMA-RAY BURSTS; CORE-COLLAPSE SUPERNOVAE; SUPERCONDUCTING COSMIC STRINGS; MAGNETAR GIANT FLARES; SCIENCE RUN; RELATIVISTIC JETS; POINT SOURCES; BLACK-HOLES; LOCAL-RATE; TELESCOPEGravitational wavesGeneral Relativity and Quantum CosmologyCORE-COLLAPSE SUPERNOVAESettore FIS/05 - Astronomia e AstrofisicaCoincidentneutrino experiments0103 physical sciences010306 general physicsMAGNETAR GIANT FLARESBLACK-HOLESHigh Energy Astrophysical PhenomenaGravitational waveAstronomy[ PHYS.ASTR.HE ] Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Astronomy and AstrophysicsDRIVENUniverseLIGOGIANT FLARESLOCAL-RATEFISICA APLICADALUMINOSITYRADIATIONHigh Energy Physics::Experiment[ SDU.ASTR.HE ] Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Experiments[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Combined sensitivity to the neutrino mass ordering with JUNO, the IceCube Upgrade, and PINGU

2020

Physical review / D 101(3), 032006 (1-19) (2020). doi:10.1103/PhysRevD.101.032006

Physics - Instrumentation and DetectorsPhysics::Instrumentation and Detectorsantineutrino/e: energy spectrumJoint analysishiukkasfysiikka7. Clean energy01 natural sciencesString (physics)PINGUHigh Energy Physics - ExperimentSubatomär fysikHigh Energy Physics - Experiment (hep-ex)neutrino: atmosphereSubatomic Physics[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Particle Physics Experimentsneutrino: massphysics.ins-detPhysicsJUNOPhysicsneutriinotoscillation [neutrino]Instrumentation and Detectors (physics.ins-det)massa (fysiikka)atmosphere [neutrino]tensionneutrino: nuclear reactormass difference [neutrino]ddc:UpgradePhysique des particules élémentairesnuclear reactor [neutrino]proposed experimentNeutrinoperformanceParticle physicsAstrophysics::High Energy Astrophysical Phenomenaneutrino: mass differenceFOS: Physical sciencesddc:500.25300103 physical sciencesEnergy spectrumIceCube: upgradeOSCILLATIONSddc:530Sensitivity (control systems)[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsNeutrino oscillationenergy spectrum [antineutrino/e]hep-ex010308 nuclear & particles physicssensitivityPhysics and Astronomymass [neutrino]stringupgrade [IceCube]High Energy Physics::ExperimentReactor neutrinoneutrino: oscillationMATTER
researchProduct

Computational Techniques for the Analysis of Small Signals in High-Statistics Neutrino Oscillation Experiments

2020

The current and upcoming generation of Very Large Volume Neutrino Telescopes – collecting unprecedented quantities of neutrino events – can be used to explore subtle effects in oscillation physics, such as (but not restricted to) the neutrino mass ordering. The sensitivity of an experiment to these effects can be estimated from Monte Carlo simulations. With the high number of events that will be collected, there is a trade-off between the computational expense of running such simulations and the inherent statistical uncertainty in the determined values. In such a scenario, it becomes impractical to produce and use adequately-sized sets of simulated events with traditional methods, such as M…

data analysis methodNuclear and High Energy PhysicsMonte Carlo methodFVLV nu TData analysis; Detector; KDE; MC; Monte Carlo; Neutrino; Neutrino mass ordering; Smoothing; Statistics; VLVνTData analysisKDEFOS: Physical sciences01 natural sciencesIceCubeHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)statistical analysisnumerical methods0103 physical sciencesStatisticsNeutrinoddc:530Sensitivity (control systems)MC010306 general physicsNeutrino oscillationInstrumentation and Methods for Astrophysics (astro-ph.IM)InstrumentationMonte CarloPhysicsVLVνT010308 nuclear & particles physicsOscillationStatisticsoscillation [neutrino]ObservableDetectorMonte Carlo [numerical calculations]WeightingNeutrino mass orderingPhysics and AstronomyPhysics - Data Analysis Statistics and ProbabilityPhysique des particules élémentairesNeutrinoAstrophysics - Instrumentation and Methods for AstrophysicsMATTERData Analysis Statistics and Probability (physics.data-an)SmoothingSmoothing
researchProduct

A Fermi Gamma-Ray Burst Monitor Search for Electromagnetic Signals Coincident with Gravitational-wave Candidates in Advanced LIGO's First Observing R…

2019

We present a search for prompt gamma-ray counterparts to compact binary coalescence gravitational wave (GW) candidates from Advanced LIGO's first observing run (O1). As demonstrated by the multimessenger observations of GW170817/GRB 170817A, electromagnetic and GW observations provide complementary information about the astrophysical source and, in the case of weaker candidates, may strengthen the case for an astrophysical origin. Here we investigate low-significance GW candidates from the O1 compact-binary coalescence searches using the Fermi Gamma-ray Burst Monitor (GBM), leveraging its all-sky and broad energy coverage. Candidates are ranked and compared to background to measure signific…

AstrofísicaGravitacióAstronomyAstrophysics::High Energy Astrophysical Phenomenagamma-ray burst: generalFOS: Physical sciencesAstrophysicsAstronomy & Astrophysicsgeneral [gamma-ray burst]01 natural sciencesCoincidenceCoincident0103 physical sciences010306 general physics010303 astronomy & astrophysicsgravitational waveSTFCQCQBHigh Energy Astrophysical Phenomena (astro-ph.HE)Settore FIS/01Physicsastro-ph.HEScience & TechnologySolar flareGravitational wavegamma-ray burst: general; gravitational waves; Astronomy and Astrophysics; Space and Planetary ScienceRCUKAstronomy and AstrophysicsAstronomy and AstrophysicLIGOPhysics and Astronomygravitational wavesSpace and Planetary SciencePhysical Sciencesgamma-ray burst: general; gravitational wavesgeneral; gravitational waves; Astronomy and Astrophysics; Space and Planetary Science [gamma-ray burst]False alarmAstrophysics - High Energy Astrophysical PhenomenaGamma-ray burst[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Fermi Gamma-ray Space Telescope
researchProduct

Search for GW signals associated with GRBs

2021

We present the results of targeted searches for gravitational-wave transients associated with gamma-ray bursts during the second observing run of Advanced LIGO and Advanced Virgo, which took place from 2016 November to 2017 August. We have analyzed 98 gamma-ray bursts using an unmodeled search method that searches for generic transient gravitational waves and 42 with a modeled search method that targets compact-binary mergers as progenitors of short gamma-ray bursts. Both methods clearly detect the previously reported binary merger signal GW170817, with p-values of <9.38x10^-6^ (modeled) and 3.1x10^-4^ (unmodeled). We do not find any significant evidence for gravitational-wave signals assoc…

Astrophysics and AstronomyGamma-ray astronomyhigh energy astrophysicsAstrophysics::High Energy Astrophysical PhenomenaPhysicsAstrophysics::Cosmology and Extragalactic Astrophysicsstellar astronomyGamma ray burstsGravitational wavesCosmologyobservational astronomyGamma ray astronomyGamma-ray burstsAstrophysical ProcessesNatural Sciences
researchProduct