6533b85dfe1ef96bd12bea85
RESEARCH PRODUCT
Computational Techniques for the Analysis of Small Signals in High-Statistics Neutrino Oscillation Experiments
M. G. AartsenM. AckermannJ. AdamsJ. A. AguilarM. AhlersM. AhrensI. Al SamaraiD. AltmannK. AndeenT. AndersonI. AnsseauG. AntonC. ArgüellesT. C. ArlenJ. AuffenbergS. AxaniH. BagherpourX. BaiA. BalagopalJ. P. BarronI. BartosS. W. BarwickV. BaumR. BayJ. J. BeattyJ. Becker TjusK. -H BeckerS. BenzviD. BerleyE. BernardiniD. Z. BessonG. BinderD. BindigE. BlaufussS. BlotC. BohmM. BohmerM. BörnerF. BosS. BöserO. BotnerE. BourbeauJ. BourbeauF. BradascioJ. BraunM. BrenzkeH. -P BretzS. BronJ. Brostean-kaiserA. BurgmanR. S. BusseT. CarverE. CheungD. ChirkinAsen ChristovK. ClarkL. ClassenG. H. CollinJ. M. ConradP. CoppinP. CorreaD. F. CowenR. CrossP. DaveM. DayJ. P. A. M. AndréC. ClercqJ. J. DelaunayH. DembinskiS. RidderP. DesiatiK. D. VriesG. WasseigeM. WithT. DeyoungJ. C. Díaz-vélezV. Di LorenzoH. DujmovicJ. P. DummM. DunkmanM. A. DuvernoisE. DvorakB. EberhardtT. EhrhardtB. EichmannP. EllerR. EngelJ. J. EvansP. A. EvensonS. FaheyA. R. FazelyJ. FeldeK. FilimonovC. FinleyS. FlisA. FranckowiakE. FriedmanA. FritzT. K. GaisserJ. GallagherA. GartnerL. GerhardtR. GernhaeuserK. GhorbaniW. GiangT. GlauchT. GlüsenkampA. GoldschmidtJ. G. GonzalezD. GrantZ. GriffithC. HaackA. HallgrenF. HalzenK. HansonJ. HaugenA. HaungsD. HebeckerD. HeeremanK. HelbingR. HellauerF. HenningsenS. HickfordM. HieronymusJ. HignightG. C. HillK. D. HoffmanB. HoffmannR. HoffmannT. HoinkaB. Hokanson-fasigK. HolzapfelK. HoshinaF. HuangM. HuberT. HuberT. HuegeK. HultqvistM. HünnefeldR. HussainS. InN. IovineA. IshiharaE. JacobiG. S. JaparidzeM. JeongK. JeroB. J. P. JonesP. KalaczynskiO. KalekinW. KangD. KangA. KappesD. KappesserT. KargA. KarleT. KatoriU. KatzM. KauerA. KeivaniJ. L. KelleyA. KheirandishJ. KimM. KimT. KintscherJ. KirylukT. KittlerS. R. KleinR. KoiralaH. KolanoskiL. KöpkeC. KopperS. KopperJ. P. KoschinskyD. J. KoskinenM. KowalskiC. B. KraussK. KringsM. KrollG. KrücklS. KunwarN. KurahashiT. KuwabaraA. KyriacouM. LabareJ. L. LanfranchiM. J. LarsonF. LauberD. LennarzK. LeonardM. Lesiak-bzdakA. LeszczynskaM. LeuermannQ. R. LiuE. LohfinkJ. LoseccoC. J. Lozano MariscalL. LuJ. LünemannW. LuszczakJ. MadsenG. MaggiK. B. M. MahnS. MancinaS. MandaliaS. MarkaZ. MarkaR. MaruyamaK. MaseR. MaunuK. MeagherM. MediciM. MeierT. MenneG. MerinoT. MeuresS. MiareckiJ. MicallefG. MomentéT. MontaruliR. W. MooreM. MoulaiR. NahnhauerP. NakarmiU. NaumannG. NeerH. NiederhausenS. C. NowickiD. R. NygrenA. Obertacke PollmannM. OehlerA. OlivasA. O MurchadhaE. O SullivanA. PalazzoT. PalczewskiH. PandyaD. V. PankovaL. PappP. PeifferJ. A. PepperC. Pérez Los HerosT. C. PetersenD. PielothE. PinatJ. L. PinfoldM. PlumP. B. PriceG. T. PrzybylskiC. RaabL. RädelM. RameezL. RauchK. RawlinsI. C. ReaR. ReimannB. RelethfordM. RelichM. RenschlerE. ResconiW. RhodeM. RichmanM. RiegelS. RobertsonM. RongenC. RottT. RuheD. RyckboschD. RysewykI. SafaT. SälzerS. E. Sanchez HerreraA. SandrockJ. SandroosP. SandstromM. SantanderS. SarkarS. SarkarK. SataleckaH. SchielerP. SchlunderT. SchmidtA. SchneiderS. SchoenenS. SchönebergF. G. SchröderL. SchulteL. SchumacherS. SclafaniD. SeckelS. SeunarineM. H. ShaevitzJ. SoedingreksoD. SoldinS. Söldner-remboldM. SongG. M. SpiczakC. SpieringJ. StachurskaM. StamatikosT. StanevA. StasikR. SteinJ. StettnerA. SteuerT. StezelbergerR. G. StokstadA. StößlN. L. StrotjohannT. StuttardG. W. SullivanM. SutherlandI. TaboadaA. TaketaH. K. M. TanakaJ. TatarF. TenholtS. Ter-antonyanA. TerliukS. TilavP. A. ToaleM. N. TobinC. TönnisS. ToscanoD. TosiM. TselengidouC. F. TungA. TurcatiC. F. TurleyB. TyE. UngerM. UsnerJ. VandenbrouckeW. DriesscheD. EijkN. EijndhovenS. VanheuleJ. SantenD. VebericE. VogelM. VraegheC. WalckA. WallaceM. WallraffF. D. WandlerN. WandkowskyA. WazaC. WeaverA. WeindlM. J. WeissC. WendtJ. WerthebachS. WesterhoffB. J. WhelanK. WiebeC. H. WiebuschL. WilleD. R. WilliamsL. WillsM. WolfJ. WoodT. R. WoodE. WoolseyK. WoschnaggG. WredeS. WrenD. L. XuX. W. XuY. XuJ. P. YanezG. YodhS. YoshidaT. Yuansubject
data analysis methodNuclear and High Energy PhysicsMonte Carlo methodFVLV nu TData analysis; Detector; KDE; MC; Monte Carlo; Neutrino; Neutrino mass ordering; Smoothing; Statistics; VLVνTData analysisKDEFOS: Physical sciences01 natural sciencesIceCubeHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)statistical analysisnumerical methods0103 physical sciencesStatisticsNeutrinoddc:530Sensitivity (control systems)MC010306 general physicsNeutrino oscillationInstrumentation and Methods for Astrophysics (astro-ph.IM)InstrumentationMonte CarloPhysicsVLVνT010308 nuclear & particles physicsOscillationStatisticsoscillation [neutrino]ObservableDetectorMonte Carlo [numerical calculations]WeightingNeutrino mass orderingPhysics and AstronomyPhysics - Data Analysis Statistics and ProbabilityPhysique des particules élémentairesNeutrinoAstrophysics - Instrumentation and Methods for AstrophysicsMATTERData Analysis Statistics and Probability (physics.data-an)SmoothingSmoothingdescription
The current and upcoming generation of Very Large Volume Neutrino Telescopes – collecting unprecedented quantities of neutrino events – can be used to explore subtle effects in oscillation physics, such as (but not restricted to) the neutrino mass ordering. The sensitivity of an experiment to these effects can be estimated from Monte Carlo simulations. With the high number of events that will be collected, there is a trade-off between the computational expense of running such simulations and the inherent statistical uncertainty in the determined values. In such a scenario, it becomes impractical to produce and use adequately-sized sets of simulated events with traditional methods, such as Monte Carlo weighting. In this work we present a staged approach to the generation of expected distributions of observables in order to overcome these challenges. By combining multiple integration and smoothing techniques which address limited statistics from simulation it arrives at reliable analysis results using modest computational resources.
year | journal | country | edition | language |
---|---|---|---|---|
2020-10-01 |