0000000001099561

AUTHOR

E. Vogel

showing 10 related works from this author

Astrophysical neutrinos and cosmic rays observed by IceCube

2018

The core mission of the IceCube neutrino observatory is to study the origin and propagation of cosmic rays. IceCube, with its surface component IceTop, observes multiple signatures to accomplish this mission. Most important are the astrophysical neutrinos that are produced in interactions of cosmic rays, close to their sources and in interstellar space. IceCube is the first instrument that measures the properties of this astrophysical neutrino flux and constrains its origin. In addition, the spectrum, composition, and anisotropy of the local cosmic-ray flux are obtained from measurements of atmospheric muons and showers. Here we provide an overview of recent findings from the analysis of Ic…

Atmospheric ScienceAstrophysics::High Energy Astrophysical PhenomenaAerospace EngineeringCosmic rayAstrophysicsPhysics and Astronomy(all)7. Clean energy01 natural sciencesIceCube Neutrino ObservatoryIceCubecosmic raysObservatory0103 physical sciencesNeutrinos010303 astronomy & astrophysicsCosmic raysPhysicsMuon010308 nuclear & particles physicsGamma rayAstrophysics::Instrumentation and Methods for AstrophysicsneutrinosAstronomyAstronomy and AstrophysicsGeophysicsCosmic rays; IceCube; Neutrinos; Aerospace Engineering; Space and Planetary ScienceNeutrino detector13. Climate actionSpace and Planetary SciencePhysique des particules élémentairesGeneral Earth and Planetary SciencesNeutrinoNeutrino astronomy
researchProduct

The IceCube realtime alert system

2016

Following the detection of high-energy astrophysical neutrinos in 2013, their origin is still unknown. Aiming for the identification of an electromagnetic counterpart of a rapidly fading source, we have implemented a realtime analysis framework for the IceCube neutrino observatory. Several analyses selecting neutrinos of astrophysical origin are now operating in realtime at the detector site in Antarctica and are producing alerts to the community to enable rapid follow-up observations. The goal of these observations is to locate the astrophysical objects responsible for these neutrino signals. This paper highlights the infrastructure in place both at the South Pole detector site and at IceC…

HIGH-ENERGY NEUTRINOSTELESCOPEAstrophysics::High Energy Astrophysical PhenomenaMulti-messenger astronomy; Neutrino astronomy; Neutrino detectors; Transient sources; Astronomy and AstrophysicspoleFOS: Physical sciences01 natural sciencesIceCubelaw.inventionIceCube Neutrino ObservatoryTelescopeSEARCHESCORE-COLLAPSE SUPERNOVAElawObservatory0103 physical sciencesMulti-messenger astronomysiteNeutrino detectors010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsbackgroundEvent (computing)Astrophysics::Instrumentation and Methods for AstrophysicsAstronomyAstronomy and AstrophysicsPERFORMANCEsensitivityTransient sourcesobservatoryIdentification (information)electromagneticPhysics and AstronomyNeutrino detectorNeutrino astronomyddc:540High Energy Physics::ExperimentNeutrinoNeutrino astronomyAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Instrumentation and Methods for AstrophysicsFOLLOW-UPAstroparticle Physics
researchProduct

Measurement of Atmospheric Neutrino Oscillations at 6–56 GeV with IceCube DeepCore

2018

We present a measurement of the atmospheric neutrino oscillation parameters using three years of data from the IceCube Neutrino Observatory. The DeepCore infill array in the center of IceCube enables the detection and reconstruction of neutrinos produced by the interaction of cosmic rays in Earth's atmosphere at energies as low as ∼5 GeV. That energy threshold permits measurements of muon neutrino disappearance, over a range of baselines up to the diameter of the Earth, probing the same range of L/Eν as long-baseline experiments but with substantially higher-energy neutrinos. This analysis uses neutrinos from the full sky with reconstructed energies from 5.6 to 56 GeV. We measure Δm322=2.31…

interaction [cosmic radiation]Physics::Instrumentation and DetectorsSolar neutrinoGeneral Physics and Astronomy01 natural sciences7. Clean energyHigh Energy Physics - ExperimentIceCubeSubatomär fysikHigh Energy Physics - Experiment (hep-ex)ObservatorySubatomic PhysicsTOOLPhysicsoscillation [neutrino]Astrophysics::Instrumentation and Methods for Astrophysicsatmosphere [neutrino]threshold [energy]mass difference [neutrino]ddc:observatoryNeutrino detectorPhysique des particules élémentairesAstrophysics::Earth and Planetary AstrophysicsNeutrinoParticle physicscosmic radiation [neutrino]acceleratorAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesddc:500.2Physics and Astronomy(all)IceCube Neutrino ObservatoryPhysics and Astronomy (all)0103 physical sciencesneutrino/muddc:530energy: high [neutrino]010306 general physicsNeutrino oscillationAstroparticle physics010308 nuclear & particles physicsICEHigh Energy Physics::PhenomenologyAstronomySolar neutrino problemPhysics and Astronomy13. Climate actionmass [neutrino]High Energy Physics::ExperimentSYSTEMmixing angle [neutrino]experimental resultsPhysical Review Letters
researchProduct

Search for sterile neutrino mixing using three years of IceCube DeepCore data

2017

Physical review / D 95(11), 112002(2017). doi:10.1103/PhysRevD.95.112002

FLUXSterile neutrinoParticle physicsPhysics and Astronomy (miscellaneous)Physics::Instrumentation and DetectorsSolar neutrinoAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciences01 natural sciences530High Energy Physics - ExperimentOSCILLATION EXPERIMENTSHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0103 physical sciencesTRACK RECONSTRUCTIONddc:530010306 general physicsNeutrino oscillationPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyAstronomySolar neutrino problemLINE-EXPERIMENT-SIMULATORMODELHigh Energy Physics - PhenomenologyNeutrino detectorPhysics and AstronomyMeasurements of neutrino speedHigh Energy Physics::ExperimentNeutrino astronomyNeutrino
researchProduct

Synthesis and Electrochemical Reactivity of sigma-Bonded and N-Substituted Cobalt Porphycenes.

1998

The first synthesis and characterization of sigma-bonded and N-substituted cobalt porphycenes is reported. The investigated compounds are represented as (Pc)Co(R) and (N-CH(3)OEPc)CoCl, where R is CH(3) or C(6)H(5), Pc is the dianion of 2,3,6,7,12,13,16,17-octaethylporphycene (OEPc), 2,7,12,17-tetrapropylporphycene (TPrPc), or 2,7,12,17-tetraethyl-3,6,13,16-tetramethylporphycene (EtioPc), N-CH(3)OEPc is the monoanion of N-methyl-2,3,6,7,12,13,16,17-octaethylporphycene. Each sigma-bonded (Pc)Co(R) derivative can be reversibly reduced or oxidized by two electrons, but a slow migration of the sigma-bonded R group occurs following electrogeneration of [(Pc)Co(R)](+)()(*)() leading, as a final p…

Inorganic Chemistrychemistry.chemical_compoundReduced productchemistryStereochemistrychemistry.chemical_elementReactivity (chemistry)Physical and Theoretical ChemistryElectrochemistryMedicinal chemistryCobaltDerivative (chemistry)Inorganic chemistry
researchProduct

Computational Techniques for the Analysis of Small Signals in High-Statistics Neutrino Oscillation Experiments

2020

The current and upcoming generation of Very Large Volume Neutrino Telescopes – collecting unprecedented quantities of neutrino events – can be used to explore subtle effects in oscillation physics, such as (but not restricted to) the neutrino mass ordering. The sensitivity of an experiment to these effects can be estimated from Monte Carlo simulations. With the high number of events that will be collected, there is a trade-off between the computational expense of running such simulations and the inherent statistical uncertainty in the determined values. In such a scenario, it becomes impractical to produce and use adequately-sized sets of simulated events with traditional methods, such as M…

data analysis methodNuclear and High Energy PhysicsMonte Carlo methodFVLV nu TData analysis; Detector; KDE; MC; Monte Carlo; Neutrino; Neutrino mass ordering; Smoothing; Statistics; VLVνTData analysisKDEFOS: Physical sciences01 natural sciencesIceCubeHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)statistical analysisnumerical methods0103 physical sciencesStatisticsNeutrinoddc:530Sensitivity (control systems)MC010306 general physicsNeutrino oscillationInstrumentation and Methods for Astrophysics (astro-ph.IM)InstrumentationMonte CarloPhysicsVLVνT010308 nuclear & particles physicsOscillationStatisticsoscillation [neutrino]ObservableDetectorMonte Carlo [numerical calculations]WeightingNeutrino mass orderingPhysics and AstronomyPhysics - Data Analysis Statistics and ProbabilityPhysique des particules élémentairesNeutrinoAstrophysics - Instrumentation and Methods for AstrophysicsMATTERData Analysis Statistics and Probability (physics.data-an)SmoothingSmoothing
researchProduct

CCDC 161427: Experimental Crystal Structure Determination

2002

Related Article: Qian Yi Li, E.Vogel, A.H.Parham, M.Nieger, M.Bolte, R.Frohlich, P.Saarenketo, K.Rissanen, F.Vogtle|2001|Eur.J.Org.Chem.|2001|4041|doi:10.1002/1099-0690(200111)2001:213.0.CO;2-7

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(2)-bis(319253742444749-Octamethyl-2222:4040-bis(pentamethylene)-5172735-tetraazaheptacyclo[36.2.2.2^1821^.2^2326^.2^3639^.1^913^.1^2933^]pentaconta-13791113(43)1418202325293133(48)363841444649-eicosaen-6162834-tetraone)-catenane dimethylsulfoxide dichloromethane solvate monohydrateExperimental 3D Coordinates
researchProduct

CCDC 161426: Experimental Crystal Structure Determination

2002

Related Article: Qian Yi Li, E.Vogel, A.H.Parham, M.Nieger, M.Bolte, R.Frohlich, P.Saarenketo, K.Rissanen, F.Vogtle|2001|Eur.J.Org.Chem.|2001|4041|doi:10.1002/1099-0690(200111)2001:213.0.CO;2-7

Space GroupCrystallographyCrystal SystemCrystal Structure3172335415561737880838588909395-Hexadecamethyl-2020:3838:5858:7676-tetrakis(pentamethylene)-5152533435363718494-decaazatridecacyclo[70.2.2.21619.22124.23437.23942.25457.25962.27275.1711.12731.14549.16569]hexanonaconta-137911(79)1216182123272931(84)34363941454749(89)5054565961656769(94)72747780828587909295-octatriacontaen-614263244526470-octaone chloroform dichloromethane acetic acid propanoic acid ethanol methanol solvate trihydrateCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 161428: Experimental Crystal Structure Determination

2002

Related Article: Qian Yi Li, E.Vogel, A.H.Parham, M.Nieger, M.Bolte, R.Frohlich, P.Saarenketo, K.Rissanen, F.Vogtle|2001|Eur.J.Org.Chem.|2001|4041|doi:10.1002/1099-0690(200111)2001:213.0.CO;2-7

Space GroupCrystallographyCrystal System(2)-bis(9-Acetoxy-315213338404345-octamethyl-1818:3636-bis(pentamethylene)-5132330-tetraazaheptacyclo[33.2.2.2^1417^.2^1922^.2^3235^.1^711^.1^2529^]hexatetraconta-137911(39)14161921252729(44)323437404245-octatriacontaene-5132330-tetraone)-catenane methanol solvate monohydrateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 161425: Experimental Crystal Structure Determination

2002

Related Article: Qian Yi Li, E.Vogel, A.H.Parham, M.Nieger, M.Bolte, R.Frohlich, P.Saarenketo, K.Rissanen, F.Vogtle|2001|Eur.J.Org.Chem.|2001|4041|doi:10.1002/1099-0690(200111)2001:213.0.CO;2-7

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates3172335415561737880838588909395-Hexadecamethyl-2020:3838:5858:7676-tetrakis(pentamethylene)-5152533435363718494-decaazatridecacyclo[70.2.2.2^1619^.2^2124^.2^3437^.2^3942^.2^5457^.2^5962^.2^7275^.1^711^.1^2731^.1^4549^.1^6569^]hexanonaconta-137911(79)1216182123272931(84)34363941454749(89)5054565961656769(94)72747780828587909295-octatriacontaen-614263244526470-octaone chloroform dichloromethane ethyl acetate methanol solvate hydrate
researchProduct