0000000000374293

AUTHOR

Weihao Weng

Niobium phosphates as new highly selective catalysts for the oxidative dehydrogenation of ethane

Several niobium phosphate phases have been prepared, fully characterized and tested as catalysts for the selective oxidation of ethane to ethylene. Three distinct niobium phosphate catalysts were prepared, and each was comprised predominantly of a different bulk phase, namely Nb(2)P(4)O(15), NbOPO(4) and Nb(1.91)P(2.82)O(12). All of the niobium phosphate catalysts showed high selectivity towards ethylene, but the best catalyst was Nb(1.91)P(2.82)O(12), which was produced from the reduction of niobium oxide phosphate (NbOPO(4)) by hydrogen. It was particularly selective for ethylene, giving ca. 95% selectivity at 5% conversion, decreasing to ca. 90% at 15% conversion, and only produced low l…

research product

The significance of the order of impregnation on the activity of vanadia promoted palladium-alumina catalysts for propane total oxidation

The increased activity of alumina-supported palladium catalysts promoted with vanadium oxide has been investigated. Three different vanadium promoted Pd/Al2O3 catalysts with the same composition but synthesized employing sequential and co-impregnation were tested for the total oxidation of propane. The order of impregnation was critical to produce high activity catalysts. Vanadium and palladium co-impregnation on the Al2O3 support led to the most active catalyst, whereas the step-wise impregnated catalysts show a catalytic performance similar to or slightly better than unpromoted palladium catalysts. The high activity of the co-impregnated catalysts is related to the particle size and oxida…

research product

Structural characterization of Niobium Phosphate Catalysts used for the Oxidative Dehydrogenation of Ethane to Ethylene

Extended abstract of a paper presented at Microscopy and Microanalysis 2011 in Nashville, Tennessee, USA, August 7–August 11, 2011.

research product