0000000000375856

AUTHOR

Gamal A. I. Moustafa

showing 2 related works from this author

Geminal Parahydrogen-Induced Polarization: Accumulating Long-Lived Singlet Order on Methylene Proton Pairs

2020

In the majority of hydrogenative parahydrogen-induced polarization (PHIP) experiments, the hydrogen molecule undergoes pairwise cis addition to an unsaturated precursor to occupy vicinal positions on the product molecule. However, some ruthenium-based hydrogenation catalysts induce geminal hydrogenation, leading to a reaction product in which the two hydrogen atoms are transferred to the same carbon centre, forming a methylene (CH2) group. The singlet order of parahydrogen is substantially retained over the geminal hydrogenation reaction, giving rise to a singlet-hyperpolarized CH2 group. Although the T1 relaxation times of the methylene protons are often short, the singlet order has a long…

inorganic chemicals
researchProduct

<i>Geminal</i> Parahydrogen-Induced Polarization: Accumulating Long-Lived Singlet Order on Methylene Proton Pairs

2020

Abstract. In the majority of hydrogenative PHIP (Parahydrogen Induced Polarization) experiments, the hydrogen molecule undergoes pairwise cis-addition to an unsaturated precursor to occupy vicinal positions on the product molecule. However, some ruthenium-based hydrogenation catalysts induce geminal hydrogenation, leading to a reaction product in which the twohydrogen atoms are transferred to the same carbon center, forming a methylene (CH2) group. The singlet order of parahydrogen is substantially retained over the geminal hydrogenation reaction, giving rise to a singlet-hyperpolarized CH2 group. Although the T1 relaxation times of the methylene protons are often short, the singlet order h…

inorganic chemicalsGeminalHydrogen010405 organic chemistrychemistry.chemical_element010402 general chemistrySpin isomers of hydrogenPhotochemistry01 natural sciencesChemical reaction0104 chemical sciencesChemical kineticschemistry.chemical_compoundchemistryMoleculeSinglet stateMethylene
researchProduct