0000000000376347

AUTHOR

Alessandro Bettini

showing 3 related works from this author

Radiopurity control in the NEXT-100 double beta decay experiment

2013

An extensive material screening and selection process is underway in the construction of the "Neutrino Experiment with a Xenon TPC" (NEXT), intended to investigate neutrinoless double beta decay using a high-pressure xenon gas TPC filled with 100 kg of Xe enriched in 136Xe. Determination of the radiopurity levels of the materials is based on gamma-ray spectroscopy using ultra-low background germanium detectors at the Laboratorio Subterraneo de Canfranc (Spain) and also on Glow Discharge Mass Spectrometry. Materials to be used in the shielding, pressure vessel, electroluminescence and high voltage components and energy and tracking readout planes have been already taken into consideration. T…

PhysicsNuclear physicsXenonchemistryDouble beta decayIsotopes of xenonchemistry.chemical_elementGamma spectroscopyNeutrinoParticle detectorRadioactive decaySemiconductor detectorAIP Conference Proceedings
researchProduct

Cosmic-ray muon flux at Canfranc Underground Laboratory

2019

Residual flux and angular distribution of high-energy cosmic muons have been measured in two underground locations at the Canfranc Underground Laboratory (LSC) using a dedicated Muon Monitor. The instrument consists of three layers of fast scintillation detector modules operating as 352 independent pixels. The monitor has flux-defining area of 1 m${}^{2}$, covers all azimuth angles, and zenith angles up to $80^\circ$. The measured integrated muon flux is $(5.26 \pm 0.21) \times 10^{-3}$ m${}^{-2}$s${}^{-1}$ in the Hall A of the LAB2400 and $(4.29 \pm 0.17) \times 10^{-3}$ m${}^{-2}$s${}^{-1}$ in LAB2500. The angular dependence is consistent with the known profile and rock density of the sur…

Physics - Instrumentation and DetectorsPhysics and Astronomy (miscellaneous)Physics::Instrumentation and DetectorsFOS: Physical sciencesFluxlcsh:AstrophysicsCosmic rayApplied Physics (physics.app-ph)hiukkasfysiikkaScintillator01 natural sciencesNuclear physicslcsh:QB460-4660103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. Radioactivity010303 astronomy & astrophysicsEngineering (miscellaneous)ZenithPhysicsMuon010308 nuclear & particles physicsCanfranc Underground LaboratoryPhysics - Applied PhysicsInstrumentation and Detectors (physics.ins-det)Azimuthilmaisimethigh-energy cosmic muonsMuon fluxlcsh:QC770-798High Energy Physics::Experimentkosminen säteily
researchProduct

Radiopurity control in the NEXT-100 double beta decay experiment: procedures and initial measurements

2013

[EN] The "Neutrino Experiment with a Xenon Time-Projection Chamber" (NEXT) is intended to investigate the neutrinoless double beta decay of Xe-136, which requires a severe suppression of potential backgrounds. An extensive screening and material selection process is underway for NEXT since the control of the radiopurity levels of the materials to be used in the experimental set-up is a must for rare event searches. First measurements based on Glow Discharge Mass Spectrometry and gamma-ray spectroscopy using ultra-low background germanium detectors at the Laboratorio Subterraneo de Canfranc (Spain) are described here. Activity results for natural radioactive chains and other common radionucl…

MECANICA DE LOS MEDIOS CONTINUOS Y TEORIA DE ESTRUCTURASPhysics - Instrumentation and DetectorsGlow Discharge Mass SpectrometryPhysics::Instrumentation and Detectorschemistry.chemical_elementFOS: Physical sciencesGermanium01 natural sciences7. Clean energyTECNOLOGIA ELECTRONICANuclear physicsCambres d'ionitzacióXenonDouble beta decay0103 physical sciencesNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentInstrumentationDetectors de radiacióMathematical PhysicsPhysicsRadionuclideRadiation calculationsIonization chambers010308 nuclear & particles physicsTime projection Chambers (TPC)Gamma detectors (scintillators CZT HPG HgI etc)FísicaInstrumentation and Detectors (physics.ins-det)chemistryNuclear countersNeutrino
researchProduct