0000000000376403
AUTHOR
Y. Ueda
Measurement of the relative yields of ψ(2S) to ψ(1S) mesons produced at forward and backward rapidity in p+p , p+Al , p+Au , and He3+Au collisions at sNN=200 GeV
The PHENIX Collaboration has measured the ratio of the yields of ψ(2S) to ψ(1S) mesons produced in p+p, p+Al, p+Au, and He3+Au collisions at sNN=200 GeV over the forward and backward rapidity intervals 1.2<|y|<2.2. We find that the ratio in p+p collisions is consistent with measurements at other collision energies. In collisions with nuclei, we find that in the forward (p-going or He3-going) direction, the relative yield of ψ(2S) mesons to ψ(1S) mesons is consistent with the value measured in p+p collisions. However, in the backward (nucleus-going) direction, the ψ(2S) meson is preferentially suppressed by a factor of ∼2. This suppression is attributed in some models to the breakup of the w…
Low-momentum direct-photon measurement in Cu + Cu collisions at sNN=200GeV
We measured direct photons for pT<5GeV/c in minimum bias and 0%–40% most-central events at midrapidity for Cu+Cu collisions at sNN=200GeV. The e+e− contribution from quasireal direct virtual photons has been determined as an excess over the known hadronic contributions in the e+e− mass distribution. A clear enhancement of photons over the binary scaled p+p fit is observed for pT<4GeV/c in Cu+Cu data. The pT spectra are consistent with the Au+Au data covering a similar number of participants. The inverse slopes of the exponential fits to the excess after subtraction of the p+p baseline are 285±53(stat)±57(syst)MeV/c and 333±72(stat)±45(syst)MeV/c for minimum bias and 0%–40% most-central even…
Phonon properties of the spinel oxideMgTi2O4with theS=1/2pyrochlore lattice
We study the phonon dynamics of ${\mathrm{MgTi}}_{2}{\mathrm{O}}_{4}$ spinel by measuring the Raman and infrared reflectivity spectra in a wide frequency $(100--3000{\mathrm{cm}}^{\ensuremath{-}1})$ and temperature (10 K--300 K) range. The reflectivity spectra are analyzed by a fitting procedure based on a model which includes both Drude and phonon oscillator contributions to the dielectric constant. The phonon assignment is done from comparison between experimental data and shell model lattice dynamical calculations. We find two infrared-active ${F}_{1u}$ symmetry modes superimposed on the free carrier continuum, and four Raman-active modes of ${1A}_{1g},$ ${1E}_{g},$ and ${2F}_{2g}$ symme…
Optical phonons in theNaTiSi2O6oxide withS=12spin chains
. The infrared-active phonon frequencies are obtained by Kramers-Kronig analy-sis of the reflectivity data. The assignment of the observed modes is done using lattice dynamical calculationsbased on the valence shell model. A phase transition at about 210 K is manifested through a dramatic changeof the mode frequency and broadening, and the appearance of new phonon modes. Analyzing the phononfrequency and damping vs temperature we have found that the phase transition leaves a fingerprint in thephonon dynamics of NaTiSi
Nonperturbative-transverse-momentum effects and evolution in dihadron and direct photon-hadron angular correlations in p+p collisions at s=510 GeV
Dihadron and isolated direct photon-hadron angular correlations are measured in $p$$+$$p$ collisions at $\sqrt{s}=510$ GeV. Correlations of charged hadrons of $0.7<p_T<10$ GeV/$c$ with $\pi^0$ mesons of $4<p_T<15$ GeV/$c$ or isolated direct photons of $7<p_T<15$ GeV/$c$ are used to study nonperturbative effects generated by initial-state partonic transverse momentum and final-state transverse momentum from fragmentation. The nonperturbative behavior is characterized by measuring the out-of-plane transverse momentum component $p_{\rm out}$ perpendicular to the axis of the trigger particle, which is the high-$p_T$ direct photon or $\pi^0$. Nonperturbative evolution effects are extracted from …