0000000000376759
AUTHOR
I. D. Alkhazov
showing 4 related works from this author
Neutron and fragment yields in proton-induced fission of 238U at intermediate energies
2001
The primary fission fragment mass and kinetic energy distributions, and neutron multiplicities as function of fragment mass have been measured in the proton-induced fission of 238 U at energies Ep ¼ 20, 35, 50 and 60 MeV using time-of-flight technique. Pre-scission and post-scission neutron multiplicities have been extracted from double differential distributions. The fragment mass dependence of the post-scission neutron multiplicities reveals the gross nuclear shell structure effect even at the higher proton energies we measured. The yields ofneutron-rich fission products in the fission of 238 U by 25 MeV protons were measured using an ion guide-based isotope separator technique. The resul…
Pre- and post-scission neutron emission in the reaction180Hf(40Ar, fission) atE lab=216 MeV
1996
Neutron and fission fragment spectra following the180Hf(40Ar,f) reaction atE lab=216MeV were measured. The following neutron total, pre- and post-scission multiplicities were extracted:M tot =7.2±1.3,M pre =2.7±0.9,M post =4.5±0.9. The average temperature parameters of the neutron spectra areT pre=(1.63±0.16) MeV andT post=(1.14±0.26)MeV. The mean total kinetic energy of the fission fragments is TKE=(166±10) MeV and the measured width is σTKE=17.3MeV. The width of the fragment mass distribution is σ A =18.3u. The same reaction was analyzed using a modified statistical code which includes nuclear dissipation effects and particle and γ-ray emission in the equilibrium compound nucleus state an…
Fragment mass distribution in superasymmetric region in proton-induced fission of U and Th
1998
Fission fragment mass distributions down to super-asymmetric mass region and both pre- and post-scission neutron multiplicity for238U(p,fission) reaction atEp = 20, 35, 50, 60 MeV and for232Th(p, fission) reaction atEp = 50, 60 MeV were measured using HENDES set-up. The results indicate enhancement for super-asymmetric mass division at intermediate excitation energies.
Position-sensitive neutron detector
2002
Abstract A position-sensitive neutron detector has been developed for use in nuclear physics research. The detector consists of a ∅5.5 cm×100 cm long quartz tube filled with liquid scintillator viewed from both ends by photomultipliers and enclosed in a light-tight titanium container. The properties of the detector were determined both experimentally and by Monte Carlo simulations (EFEN code). A time resolution of 0.4 ns was reached resulting in the position resolution of less than 4 cm. The neutron registration efficiency varies from 36% to 20% within neutron energy range 1–10 MeV and is practically independent of the position along the detector length. Good n–γ separation is achieved for …