C4 ‐dicarboxylates and l ‐aspartate utilization by Escherichia coli K‐12 in the mouse intestine: l ‐aspartate as a major substrate for fumarate respiration and as a nitrogen source
C4-dicarboxylates, such as fumarate, L-malate and L-aspartate represent substrates for anaerobic growth of Escherichia coli by fumarate respiration. Here, we determined whether C4-dicarboxylate metabolism as well as fumarate respiration contribute to colonization of the mammalian intestinal tract. Metabolite profiling revealed that the murine small intestine contained high and low levels of L-aspartate and L-malate, respectively, whereas fumarate was nearly absent. Under laboratory conditions, addition of C4-dicarboxylate at concentrations corresponding to the levels of the C4-dicarboxylates in the small intestine (2.6 mMol/kg dry weight) induced the dcuBp-lacZ reporter gene (67% of maximal…
L‐Aspartate as a high‐quality nitrogen source in Escherichia coli : Regulation of L‐aspartase by the nitrogen regulatory system and interaction of L‐aspartase with GlnB
Escherichia coli uses the C4-dicarboxylate transporter DcuA for L-aspartate/fumarate antiport, which results in the exploitation of L-aspartate for fumarate respiration under anaerobic conditions and for nitrogen assimilation under aerobic and anaerobic conditions. L-Aspartate represents a high-quality nitrogen source for assimilation. Nitrogen assimilation from L-aspartate required DcuA, and aspartase AspA to release ammonia. Ammonia is able to provide by established pathways the complete set of intracellular precursors (ammonia, L-aspartate, L-glutamate, and L-glutamine) for synthesizing amino acids, nucleotides, and amino sugars. AspA was regulated by a central regulator of nitrogen meta…
Conversion of the Sensor Kinase DcuS to the Fumarate Sensitive State by Interaction of the Bifunctional Transporter DctA at the TM2/PAS
The membrane-bound C4-dicarboxylate (C4DC) sensor kinase DcuS of Escherichia coli typically forms a protein complex with the C4DC transporter DctA. The DctA × DcuS complex is able to respond to C4DCs, whereas DcuS without DctA is in the permanent ON state. In DctA, the C-terminal helix 8b (H8b) serves as the site for interaction with DcuS. Here the interaction site in DcuS and the related structural and functional adaptation in DcuS were determined. The Linker connecting transmembrane helix 2 (TM2) and the cytosolic PASC (Per-ARNT-SIM) domain of DcuS, was identified as the major site for interaction with DctA-H8b by in vivo interaction studies. The Linker is known to convert the piston-type…
CyaC, a redox-regulated adenylate cyclase of Sinorhizobium meliloti with a quinone responsive diheme-B membrane anchor domain.
The nucleotide cyclase CyaC of Sinorhizobium meliloti is a member of class III adenylate cyclases (AC), a diverse group present in all forms of life. CyaC is membrane-integral by a hexahelical membrane domain (6TM) with the basic topology of mammalian ACs. The 6TM domain of CyaC contains a tetra-histidine signature that is universally present in the membrane anchors of bacterial diheme-B succinate-quinone oxidoreductases. Heterologous expression of cyaC imparted activity for cAMP formation from ATP to Escherichia coli, whereas guanylate cyclase activity was not detectable. Detergent solubilized and purified CyaC was a diheme-B protein and carried a binuclear iron-sulfur cluster. Single poin…
DcuA of aerobically grownEscherichia coliserves as a nitrogen shuttle (L‐aspartate/fumarate) for nitrogen uptake
DcuA of Escherichia coli is known as an alternative C4 -dicarboxylate transporter for the main anaerobic C4 -dicarboxylate transporter DcuB. Since dcuA is expressed constitutively under aerobic and anaerobic conditions, DcuA was suggested to serve aerobically as a backup for the aerobic (DctA) transporter, or for the anabolic uptake of C4 -dicarboxylates. In this work, it is shown that DcuA is required for aerobic growth with L-aspartate as a nitrogen source, whereas for growth with L-aspartate as a carbon source, DctA was needed. Strains with DcuA catalyzed L-aspartate and C4 -dicarboxylate uptake (like DctA), or an L-aspartate/C4 -dicarboxylate antiport (unlike DctA). DcuA preferred L-asp…
Transmembrane signaling and cytoplasmic signal conversion by dimeric transmembrane helix 2 and a linker domain of the DcuS sensor kinase
Transmembrane (TM) signaling is a key process of membrane-bound sensor kinases. The C4-dicarboxylate (fumarate) responsive sensor kinase DcuS of Escherichia coli is anchored by TM helices TM1 and TM2 in the membrane. Signal transmission across the membrane relies on the piston-type movement of the periplasmic part of TM2. To define the role of TM2 in TM signaling, we use oxidative Cys cross-linking to demonstrate that TM2 extends over the full distance of the membrane and forms a stable TM homodimer in both the inactive and fumarate-activated state of DcuS. An S186xxxGxxxG194 motif is required for the stability and function of the TM2 homodimer. The TM2 helix further extends on the periplas…
C4-dicarboxylate metabolons: Interaction of C4-dicarboxylate transporters of Escherichia coli with cytosolic enzymes
AbstractMetabolons represent the structural organization of proteins for metabolic or regulatory pathways. Here the interaction of enzymes fumarase FumB and aspartase AspA with the C4-DC transporters DcuA and DcuB of Escherichia coli was tested by a bacterial two-hybrid (BACTH) assay in situ, or by co-chromatography (mSPINE). DcuB interacted strongly with FumB and AspA, and DcuA with AspA. The fumB-dcuB and the dcuA-aspA genes encoding the respective proteins are known for their colocalization on the genome and the production of co-transcripts. The data consistently suggest the formation of DcuB/FumB, DcuB/AspA and DcuA/AspA metabolons in fumarate respiration for the uptake of L-malate, or …