0000000000377219
AUTHOR
N. Fernández-delgado
Structural and chemical characterization of CdSe-ZnS core-shell quantum dots
Abstract The structural and compositional properties of CdSe-ZnS core-shell quantum dots (QDs) with a sub-nm shell thickness are analyzed at the atomic scale using electron microscopy. QDs with both wurtzite and zinc blende crystal structures, as well as intermixing of the two structures and stacking faults, are observed. High-angle annular dark-field scanning transmission electron microscopy suggests the presence of a lower atomic number epitaxial shell of irregular thickness around a CdSe core. The presence of a shell is confirmed using energy dispersive X-ray spectroscopy. Despite the thickness irregularities, the optical properties of the particles, such as photoluminescence and quantum…
Structural quality of CH3NH3PbI3 perovskites for photovoltaic applications analyzed by electron microscopy techniques
Inhibition of light emission from the metastable tetragonal phase at low temperatures in island-like films of lead iodide perovskites
Photonic applications based on halide perovskites, namely CH3NH3PbI3 (MAPbI3), have recently attracted remarkable attention due to the high efficiencies reported for photovoltaic and light emitting devices. Despite these outstanding results, there are many temperature-, laser excitation power-, and morphology-dependent phenomena that require further research to be completely understood. In this work, we have investigated in detail the nature of exciton optical transitions and recombination dynamics below and above the orthorhombic/tetragonal ('O'-/'T'-) temperature phase transition (∼150 K) depending on the material continuity (continuous-like) or discontinuity (island-like) in MAPbI3 films…
Structural characterization of bulk and nanoparticle lead halide perovskite thin films by (S)TEM techniques.
Lead halide (APbX3) perovskites, in polycrystalline thin films but also perovskite nanoparticles (NPs) has demonstrated excellent performance to implement a new generation of photovoltaic and photonic devices. The structural characterization of APbX3 thin films using (scanning) transmission electron microscopy ((S)TEM) techniques can provide valuable information that can be used to understand and model their optoelectronic performance and device properties. However, since APbX3 perovskites are soft materials, their characterization using (S)TEM is challenging. Here, we study and compare the structural properties of two different metal halide APbX3 perovskite thin films: bulk CH3NH3PbI3 prep…