0000000000377332

AUTHOR

Fabio Polticelli

Low-temperature optical spectroscopy of cobalt in Cu,Co superoxide dismutase: a structural dynamics study of the solvent-unaccessible metal site.

The temperature dependence (300 to 10 K) of the electronic absorption spectra of the cobalt chromophore in bovine superoxide dismutase (SOD) having the native Zn(II) ion selectivity replaced by Co(II) has been investigated in four different derivatives: Cu(II),Co(II) SOD, N3(-)-Cu(II), Co(II) SOD, Cu(I),Co(II) SOD, and E,Co(II) SOD in which the copper ion has been selectively removed. In the Cu(II),Co(II) SOD, the cobalt spectrum is characterized at room temperature by three bands centered at 18,472, 17,670, and 16,793 cm-1; the low-frequency band is split, at low temperatures, into two components, indicating a lower symmetry contribution to a predominantly tetrahedral crystal field. Additi…

research product

Low-Temperature Optical Spectroscopy of Native and Azide-Reacted Bovine Cu,Zn Superoxide Dismutase. A Structural Dynamics Study

The optical absorption spectra of native and N(3-)-reacted Cu,Zn superoxide dismutase (SOD) has been studied in the temperature range 300-10 K. The broad d-d bands observed in the room temperature spectrum, centered at 14,700 cm-1 (native enzyme) and at 15,550 cm-1 (N(3-)-reacted enzyme), are clearly split at low temperature into two bands each, centered at 12,835 and 14,844 cm-1 and at 14,418 and 16,300 cm-1, respectively. The thermal behavior of the 23,720 cm-1 band present in the spectrum of the native enzyme indicates that this band belongs to the His61-->Cu(II) ligand to metal charge transfer transition. Analysis of the zeroth, first, and second moments of the various bands as a functi…

research product