0000000000378417

AUTHOR

Yuan Luo

showing 2 related works from this author

Mitochondrial Fatty Acid β-Oxidation Inhibition Promotes Glucose Utilization and Protein Deposition through Energy Homeostasis Remodeling in Fish.

2020

BACKGROUND: Fish cannot use carbohydrate efficiently and instead utilize protein for energy supply, thus limiting dietary protein storage. Protein deposition is dependent on protein turnover balance, which correlates tightly with cellular energy homeostasis. Mitochondrial fatty acid β-oxidation (FAO) plays a crucial role in energy metabolism. However, the effect of remodeled energy homeostasis caused by inhibited mitochondrial FAO on protein deposition in fish has not been intensively studied. OBJECTIVES: This study aimed to identify the regulatory role of mitochondrial FAO in energy homeostasis maintenance and protein deposition by studying lipid, glucose, and protein metabolism in fish. M…

0301 basic medicineMaleProtein metabolismMedicine (miscellaneous)MitochondrionEnergy homeostasis03 medical and health scienceschemistry.chemical_compoundNile tilapia0302 clinical medicineAdjuvants ImmunologicmedicineAnimalsHomeostasisInsulinCarnitineProtein kinase ACells CulturedZebrafishNutrition and DieteticsbiologyCarnitine O-PalmitoyltransferaseChemistryFatty AcidsProtein turnoverProteinsMetabolismCichlidsDNACytochromes bbiology.organism_classificationMitochondria030104 developmental biologyGlucoseBiochemistryMutationHepatocytesNutrient Physiology Metabolism and Nutrient-Nutrient InteractionsEnergy MetabolismOxidation-Reduction030217 neurology & neurosurgerymedicine.drugMethylhydrazinesThe Journal of nutrition
researchProduct

Collective Modes and Structural Modulation in Ni-Mn-Ga(Co) Martensite Thin Films Probed by Femtosecond Spectroscopy and Scanning Tunneling Microscopy.

2015

International audience; The origin of the martensitic transition in the magnetic shape memory alloy Ni-Mn-Ga has been widely discussed. While several studies suggest it is electronically driven, the adaptive martensite model reproduced the peculiar nonharmonic lattice modulation. We used femtosecond spectroscopy to probe the temperature and doping dependence of collective modes, and scanning tunneling microscopy revealed the corresponding static modulations. We show that the martensitic phase can be described by a complex charge-density wave tuned by magnetic ordering and strong electron-lattice coupling.

[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph]PhysicsCondensed matter physicsDopingGeneral Physics and AstronomyNanotechnology02 engineering and technology021001 nanoscience & nanotechnology01 natural scienceslaw.inventionCondensed Matter::Materials ScienceMagnetic shape-memory alloylawMartensiteLattice (order)0103 physical sciencesModulation (music)ddc:530Scanning tunneling microscopeThin film010306 general physics0210 nano-technologyFemtochemistryPhysical review letters
researchProduct