0000000000378527

AUTHOR

Caterina Ricci

0000-0003-0573-4065

showing 3 related works from this author

Curcumin-like compounds designed to modify amyloid beta peptide aggregation patterns

2017

International audience; Curcumin is a natural polyphenol able to bind the amyloid beta peptide, which is related to Alzheimer's disease, and modify its self-assembly pathway. This paper focuses on a multi-disciplinary study that starts from the design of curcumin-like compounds with the key chemical features required for inhibiting amyloid beta aggregation, and reports the effects of these compounds on the in vitro aggregation of amyloid beta peptides. Chemoinformatic screening was performed through the calculation of molecular descriptors that were able to highlight the drug-like profile, followed by docking studies with an amyloid beta peptide fibril. The computational design underlined t…

0301 basic medicineAmyloid betaGeneral Chemical Engineering[SDV]Life Sciences [q-bio]PeptideFibrillaw.inventionChemical compounds03 medical and health scienceschemistry.chemical_compoundConfocal microscopylawMolecular descriptorDiagnosisFluorescence spectroscopyGlycoproteinschemistry.chemical_classificationbiologyNeurodegenerative diseasesProteinsAlzheimer amyloid peptide oxadiazole curcuminGeneral ChemistrySettore CHIM/06 - Chimica OrganicaIn vitro030104 developmental biologychemistryBiochemistryDocking (molecular)Curcuminbiology.proteinCell culturePeptides
researchProduct

Quaternary structures of GroEL and naïve-Hsp60 chaperonins in solution: a combined SAXS-MD study

2015

The quaternary structures of bacterial GroEL and human naïve-Hsp60 chaperonins in physiological conditions have been investigated by an innovative approach based on a combination of synchrotron Small Angle X-ray Scattering (SAXS) in-solution experiments and molecular dynamics (MD) simulations. Low-resolution SAXS experiments over large and highly symmetric oligomers are analyzed on the basis of the high-resolution structure of the asymmetric protein monomers, provided by MD. The results reveal remarkable differences between the solution and the crystallographic structure of GroEL and between the solution structures of GroEL and of its human homologue Hsp60.

Materials scienceSettore BIO/16 - Anatomia UmanaSmall-angle X-ray scatteringGeneral Chemical EngineeringChemistry (all)Settore CHIM/06 - Chimica OrganicaGeneral ChemistryCrystal structureGroELSynchrotronlaw.inventionChaperoninChemistry (all); Chemical Engineering (all) Molecular Dynamics Heat Shock Proteins Small Angle X-ray Scatteringchemistry.chemical_compoundCrystallographyMolecular dynamicsMonomerchemistrySettore CHIM/03 - Chimica Generale E InorganicalawHSP60Chemical Engineering (all) Molecular Dynamics Heat Shock Proteins Small Angle X-ray ScatteringRSC Advances
researchProduct

Structure and Stability of Hsp60 and Groel in Solution

2016

Molecular chaperones are a class of proteins able to prevent non-specific aggregation of mitochondrial proteins and to promote their proper folding. Among them, human Hsp60 is currently considered as a ubiquitous molecule with multiple roles both in maintaining health conditions and as a trigger of several diseases. Of particular interest is its role in neurodegenerative disorders since it is able to inhibit the formation of amyloid fibrils.Hsp60 structure was considered, until recent years, analogue to the one of its bacterial homolog GroEL, one of the most investigated chaperones, whose crystallographic structure is a homo-tetradecamer, made up of two seven member rings. On the contrary, …

0301 basic medicineCircular dichroismSmall-angle X-ray scatteringBiophysicsGroELDissociation (chemistry)03 medical and health scienceschemistry.chemical_compoundCrystallographyMolecular dynamics030104 developmental biologyMonomerchemistryBiophysicsMoleculeHSP60Biophysical Journal
researchProduct