0000000000378752
AUTHOR
Costanza Bonadiman
Fe-periclase reactivity at Earth's lower mantle conditions: Ab-initio geochemical modelling
Intrinsic and extrinsic stability of the (Mg, Fe) O solid mixture in the Fe-Mg-Si-O system at high P, T conditions relevant to the Earth's mantle is investigated by the combination of quantum mechanical calculations (Hartree-26 Fock/DFT hybrid scheme), cluster expansion techniques and statistical thermodynamics. Iron in the (Mg, Fe) O binary mixture is assumed to be either in the low spin (LS) or in the high spin (HS) state. Un-mixing at solid state is observed only for the LS condition in the 23-42 GPa pressure range, whereas HS does not give rise to un-mixing. LS (Mg, Fe) O un-mixings are shown to be able to incorporate iron by subsolidus reactions with a reservoir of a virtual bridgmanit…
Aluminium distribution in an Earth's non–primitive lower mantle
The aluminium incorporation mechanism of perovskite was explored by means of quantum mechanics in combination with equilibrium/off-equilibrium thermodynamics under the pressure-temperature conditions of the Earth's lower mantle (from 24 to 80 GPa). Earth's lower mantle was modelled as a geochemically non-primitive object because of an enrichment by 3 wt% of recycled crustal material (MORB component). The compositional modelling takes into account both chondrite and pyrolite reference models. The capacity of perovskite to host Al was modelled through an Al2O3 exchange process in an unconstrained Mg-perovskite + Mg-Al-perovskite + free-Al2O3(corundum) system. Aluminium is globally incorporate…
Geochemistry of Noble Gases and CO2 in Fluid Inclusions From Lithospheric Mantle Beneath Wilcza Góra (Lower Silesia, Southwest Poland)
Knowledge of the products originating from the subcontinental lithospheric mantle (SCLM) is crucial for constraining the geochemical features and evolution of the mantle. This study investigated the chemistry and isotope composition (noble gases and CO2 ) of fluid inclusions (FI) from selected mantle xenoliths originating from Wilcza Góra (Lower Silesia, southwest Poland), with the aim of integrating their petrography and mineral chemistry. Mantle xenoliths are mostly harzburgites and sometimes bear amphiboles, and are brought to the surface by intraplate alkaline basalts that erupted outside the north-easternmost part of the Eger (Ohře) Rift in Lower Silesia. Olivine (Ol) is classified int…
Lower mantle hydrogen partitioning between periclase and perovskite : a quantum chemical modelling
Abstract Partitioning of hydrogen (often referred to as H2O) between periclase (pe) and perovskite (pvk) at lower mantle conditions (24–80 GPa) was investigated using quantum mechanics, equilibrium reaction thermodynamics and by monitoring two H-incorporation models. One of these (MSWV) was based on replacements provided by Mg2+ ↔ 2H+ and Si4+ ↔ 4H+; while the other (MSWA) relied upon substitutions in 2Mg2+ ↔ Al3+ + H+ and Si4+ ↔ Al3+ + H+. H2O partitioning in these phases was considered in the light of homogeneous (Bulk Silicate Earth; pvk: 75%–pe:16% model contents) and heterogeneous (Layered Mantle; pvk:78%–pe:14% modal contents) mantle geochemical models, which were configured for lower…