0000000000378761

AUTHOR

Inés De Vega

Simulating quantum-optical phenomena with optical lattices

Cold atoms trapped in optical lattices have been proved to be very versatile quantum systems in which a large class of many-body condensed-matter Hamiltonians can be simulated [1].

research product

Effects of dissipation on an adiabatic quantum search algorithm

According to recent studies (Amin et al 2008 Phys. Rev. Lett. 100 060503), the effect of a thermal bath may improve the performance of a quantum adiabatic search algorithm. In this paper, we compare the effects of such a thermal environment on the algorithm performance with those of a structured environment similar to the one encountered in systems coupled to an electromagnetic field that exists within a photonic crystal. Whereas for all the parameter regimes explored here, the algorithm performance is worsened by contact with a thermal environment, the picture appears to be different when one considers a structured environment. In this case we show that by tuning the environment parameters…

research product

Simulating quantum-optical phenomena with cold atoms in optical lattices

We propose a scheme involving cold atoms trapped in optical lattices to observe different phenomena traditionally linked to quantum-optical systems. The basic idea consists of connecting the trapped atomic state to a non-trapped state through a Raman scheme. The coupling between these two types of atoms (trapped and free) turns out to be similar to that describing light–matter interaction within the rotating-wave approximation, the role of matter and photons being played by the trapped and free atoms, respectively. We explain in particular how to observe phenomena arising from the collective spontaneous emission of atomic and harmonic oscillator samples, such as superradiance and directiona…

research product

Non-Markovianity and memory of the initial state

We explore in a rigorous manner the intuitive connection between the non-Markovianity of the evolution of an open quantum system and the performance of the system as a quantum memory. Using the paradigmatic case of a two-level open quantum system coupled to a bosonic bath, we compute the recovery fidelity, which measures the best possible performance of the system to store a qubit of information. We deduce that this quantity is connected, but not uniquely determined, by the non-Markovianity, for which we adopt the BLP measure proposed in \cite{breuer2009}. We illustrate our findings with explicit calculations for the case of a structured environment.

research product