0000000000378840

AUTHOR

Ivo Laidmäe

showing 1 related works from this author

Salmon fibrinogen and chitosan scaffold for tissue engineering: in vitro and in vivo evaluation

2018

3D fibrous scaffolds have received much recent attention in regenerative medicine. Use of fibrous scaffolds has shown promising results in tissue engineering and wound healing. Here we report the development and properties of a novel fibrous scaffold that is useful for promoting wound healing. A scaffold made of salmon fibrinogen and chitosan is produced by electrospinning, resulting in a biocompatible material mimicking the structure of the native extracellular matrix (ECM) with suitable biochemical and mechanical properties. The scaffold is produced without the need for enzymes, in particular thrombin, but is fully compatible with their addition if needed. Human dermal fibroblasts culture…

0301 basic medicineScaffoldMaterials scienceSurface PropertiesTissue Engineering Constructs and Cell SubstratesBiomedical EngineeringBiophysicsBiocompatible MaterialsBioengineering02 engineering and technologyRegenerative medicineBiomaterialsChitosanExtracellular matrix03 medical and health scienceschemistry.chemical_compound3D cell cultureThrombinTissue engineeringSalmonmedicineAnimalsHumansCell ProliferationChitosanWound HealingTissue EngineeringTissue Scaffoldsintegumentary systemFibrinogenElectrochemical TechniquesFibroblasts021001 nanoscience & nanotechnologyRats3. Good health030104 developmental biologychemistry0210 nano-technologyWound healingBiomedical engineeringmedicine.drugJournal of Materials Science: Materials in Medicine
researchProduct