0000000000378848

AUTHOR

Volodymyr Biloshytskyi

showing 2 related works from this author

The two-photon decay of X(6900) from light-by-light scattering at the LHC

2022

The LHCb Collaboration has recently discovered a structure around 6.9 GeV in the double-$J/\psi$ mass distribution, possibly a first fully-charmed tetraquark state $X(6900)$. Based on vector-meson dominance (VMD) such a state should have a significant branching ratio for decaying into two photons. We show that the recorded LHC data for the light-by-light scattering may indeed accommodate for such a state, with a $\gamma \gamma$ branching ratio of order of $10^{-4}$, which is larger even than the value inferred by the VMD. The spin-parity assignment $0^{-+}$ is in better agreement with the VMD prediction than $0^{++}$, albeit not significantly at the current precision. Further light-by-light…

[PHYS.NUCL] Physics [physics]/Nuclear Theory [nucl-th]interpretation of experiments: CERN LHC Coll[PHYS.HEXP] Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Theoryradiative decayphoton photon: scatteringinterpretation of experiments: LHC-BFOS: Physical sciencestetraquarkvector mesonHigh Energy Physics - Experimentmass spectrum[PHYS.HPHE] Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Nuclear Theory (nucl-th)High Energy Physics - Experiment (hep-ex)High Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)branching ratiostructurephoton: pair productiontwo-photon
researchProduct

Forward light-by-light scattering and electromagnetic correction to hadronic vacuum polarization

2023

Lattice QCD calculations of the hadronic vacuum polarization (HVP) have reached a precision where the electromagnetic (e.m.) correction can no longer be neglected. This correction is both computationally challenging and hard to validate, as it leads to ultraviolet (UV) divergences and to sizeable infrared (IR) effects associated with the massless photon. While we precisely determine the UV divergence using the operator-product expansion, we propose to introduce a separation scale $\Lambda\sim400\;$MeV into the internal photon propagator, whereby the calculation splits into a short-distance part, regulated in the UV by the lattice and in the IR by the scale $\Lambda$, and a UV-finite long-di…

hadronic contributionsNuclear and High Energy Physicsfusionmassless530 PhysicsFOS: Physical sciences[PHYS.HLAT] Physics [physics]/High Energy Physics - Lattice [hep-lat]operator product expansionhadronicHigh Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)vacuum polarizationultravioletquantum electrodynamicstree approximationphoton photonlattice[PHYS.HLAT]Physics [physics]/High Energy Physics - Lattice [hep-lat]effectscatteringphotonscattering amplitudeHigh Energy Physics - Lattice (hep-lat)lattice field theory530 Physikradiative correctionssum rule[PHYS.HPHE] Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics - Phenomenologyelectromagneticfinite size[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]infrareddispersionlight-by-light scatteringpropagatorcorrectionJournal of High-Energy Physics
researchProduct