0000000000379080

AUTHOR

Hsiao-an Pan

Harnessing Fluorescence versus Phosphorescence Branching Ratio in (Phenyl)n-Bridged (n = 0–5) Bimetallic Au(I) Complexes

We have designed and synthesized a series of Au(I) complexes bearing either an alkynyl–(phenylene)n–diphosphine (A-0–A-3) or a (phenylene)n–diphosphine (B-1–B-5) bridge, among which the effective distance between Au(I) and the center of the emitting ππ* chromophore can be fine-tuned via the insertion of various numbers of phenylene spacers. We then demonstrated for the first time in a systematic manner the decrease of rate constant for S1 → T1 intersystem crossing (ISC) kisc as the increase of the effective distance. The results also unambiguously showed that the phosphorescence could be harvested via higher S0 → Sn (n > 1) electronic excitation, followed by fast Sn → Tm ISC and then the po…

research product

Harvesting Fluorescence from Efficient Tk -> Sj (j, k > 1) Reverse Intersystem Crossing for ??* Emissive Transition-Metal Complexes

Using a bimetallic Au(I) complex bearing alkynyl-(phenylene)3-diphosphine ligand (A-3), we demonstrate that the fluorescence can be exquisitely harvested upon T1 → Tk (k > 1) excitation followed by Tk → Sj (j, k > 1) intersystem crossing (ISC) back to the S1 state. Upon S0 → S1 355 nm excitation, the S1 → T1 intersystem crossing rate has been determined to be 8.9 × 108 s–1. Subsequently, in a two-step laser pump–probe experiment, following a 355 nm laser excitation, the 532 nm T1 → Tk probing gives the prominent blue 375 nm fluorescence, and this time-dependent pump–probe signal correlates well with the lifetime of the T1 state. Careful examination reveals the efficiency of Tk → Sj (j, k > …

research product