0000000000379383
AUTHOR
Jürgen Brockmöller
The induction of cytochrome P450 3A5 (CYP3A5) in the human liver and intestine is mediated by the xenobiotic sensors pregnane X receptor (PXR) and constitutively activated receptor (CAR).
Induction of cytochrome P450 3A (CYP3A) by xenobiotics may lead to clinically relevant drug interactions. In contrast with other CYP3A family members, studies on the inducibility of CYP3A5 indicate conflicting results. We report the induction of CYP3A5 mRNA in 13 of 16 hepatocyte preparations exposed to rifampin. Furthermore, induction of CYP3A5 mRNA was observed in intestinal biopsies in three of eight probands following exposure to the antibiotic. The highest absolute levels of CYP3A5 transcripts were found following rifampin treatment in hepatocytes and intestines from carriers of CYP3A5*1 alleles. Elucidation of the mechanism involved in CYP3A5 induction revealed that constitutively act…
Genetic signature consistent with selection against the CYP3A4*1B allele in non-African populations.
Cytochrome P450 3A enzymes (CYP3A) play a major role in the metabolism of steroid hormones, drugs and other chemicals, including many carcinogens. The individually variable CYP3A expression, which remains mostly unexplained, has been suggested to affect clinical phenotypes. We investigated the CYP3A locus in five ethnic groups. The degree of linkage disequilibrium (LD) differed among ethnic groups, but the most common alleles of the conserved LD regions were remarkably similar. Non-African haplotypes are few; for example, only four haplotypes account for 80% of common European Caucasian alleles. Large LD blocks of high frequencies were suggestive of selection. Accordingly, European Caucasia…
Carbonyl reductase 1 is a predominant doxorubicin reductase in the human liver.
A first step in the enzymatic disposition of the antineoplastic drug doxorubicin (DOX) is the reduction to doxorubicinol (DOX-OL). Because DOX-OL is less antineoplastic but more cardiotoxic than the parent compound, the individual rate of this reaction may affect the antitumor effect and the risk of DOX-induced heart failure. Using purified enzymes and human tissues we determined enzymes generating DOX-OL and interindividual differences in their activities. Human tissues express at least two DOX-reducing enzymes. High-clearance organs (kidney, liver, and the gastrointestinal tract) express an enzyme with an apparent Km of approximately 140 microM. Of six enzymes found to reduce DOX, Km valu…
Contribution of CYP3A5 to the in vitro hepatic clearance of tacrolimus.
Abstract Background: Tacrolimus is metabolized predominantly to 13-O-demethyltacrolimus in the liver and intestine by cytochrome P450 3A (CYP3A). Patients with high concentrations of CYP3A5, a CYP3A isoenzyme polymorphically produced in these organs, require higher doses of tacrolimus, but the exact mechanism of this association is unknown. Methods: cDNA-expressed CYP3A enzymes and a bank of human liver microsomes with known CYP3A4 and CYP3A5 content were used to investigate the contribution of CYP3A5 to the metabolism of tacrolimus to 13-O-demethyltacrolimus as quantified by liquid chromatography–tandem mass spectrometry. Results: Demethylation of tacrolimus to 13-O-demethyltacrolimus was …
A Putatively Functional Haplotype in the Gene Encoding Transforming Growth Factor Beta-1 as a Potential Biomarker for Radiosensitivity
Purpose To determine whether genetic variability in TGFB1 is related to circulating transforming growth factor-β1 (TGF-β1) plasma concentrations after radiotherapy and to radiosensitivity of lymphoid cells. Patients and Methods Transforming growth factor-β1 plasma concentrations ( n = 79) were measured in patients 1 year after radiotherapy and chromosomal aberrations ( n = 71) ex vivo before therapy start. Furthermore, TGF-β1 secretion and apoptosis were measured in isolated peripheral blood mononuclear cells of 55 healthy volunteers. These phenotypes were analyzed in relation to five germline polymorphisms in the 5′ region of the TGFB1 gene. Because of high linkage disequilibrium, these fi…
Dominant contribution of P450 3A4 to the hepatic carcinogenic activation of aflatoxin B1.
The hepatic carcinogen aflatoxin B1 (AFB1) is metabolized in the liver by at least four different P450s, all of which exhibit large interindividual differences in the expression levels. These differences could affect the individual risk of hepatocellular carcinoma (HCC). We investigated the metabolism of AFB1 in a panel of 13 human liver microsomal preparations using a hepatic abundance model, which takes into account the specific kinetic parameters and the expression levels of these P450s. We found a 12-fold variability in the production rate of the carcinogenic metabolite AFB1-8,9-epoxide (AFBO) and a 22-fold variability in the production of the detoxification product AFQ1. The ratio betw…