0000000000379409

AUTHOR

Thorsten Trimbuch

0000-0001-7512-8955

Precise Somatotopic Thalamocortical Axon Guidance Depends on LPA-Mediated PRG-2/Radixin Signaling

Summary Precise connection of thalamic barreloids with their corresponding cortical barrels is critical for processing of vibrissal sensory information. Here, we show that PRG-2, a phospholipid-interacting molecule, is important for thalamocortical axon guidance. Developing thalamocortical fibers both in PRG-2 full knockout (KO) and in thalamus-specific KO mice prematurely entered the cortical plate, eventually innervating non-corresponding barrels. This misrouting relied on lost axonal sensitivity toward lysophosphatidic acid (LPA), which failed to repel PRG-2-deficient thalamocortical fibers. PRG-2 electroporation in the PRG-2−/− thalamus restored the aberrant cortical innervation. We ide…

research product

Mutant Plasticity Related Gene 1 (PRG1) acts as a potential modifier in SCN1A related epilepsy

ABSTRACTPlasticity related gene 1 encodes a cerebral neuron-specific synaptic transmembrane protein that modulates hippocampal excitatory transmission on glutamatergic neurons. In mice, homozygous Prg1-deficiency results in juvenile epilepsy. Screening a cohort of 18 patients with infantile spasms (West syndrome), we identified one patient with a heterozygous mutation in the highly conserved third extracellular phosphatase domain (p.T299S). The functional relevance of this mutation was verified by in-utero electroporation of a mutant Prg1 construct into neurons of Prg1-knockout embryos, and the subsequent inability of hippocampal neurons to rescue the knockout phenotype on the single cell l…

research product

An unconventional role for miRNA: let-7 activates Toll-like receptor 7 and causes neurodegeneration

Activation of innate immune receptors by host-derived factors exacerbates CNS damage, but the identity of these factors remains elusive. We uncovered an unconventional role for the microRNA let-7, a highly abundant regulator of gene expression in the CNS, in which extracellular let-7 activates the RNA-sensing Toll-like receptor (TLR) 7 and induces neurodegeneration through neuronal TLR7. Cerebrospinal fluid (CSF) from individuals with Alzheimer’s disease contains increased amounts of let-7b, and extracellular introduction of let-7b into the CSF of wild-type mice by intrathecal injection resulted in neurodegeneration. Mice lacking TLR7 were resistant to this neurodegenerative effect, but thi…

research product