0000000000379551
AUTHOR
Christian Schönenberger
Charge Noise in Organic Electrochemical Transistors
Organic electrochemical transistors (OECTs) are increasingly studied as transducers in sensing applications. While much emphasis has been placed on analyzing and maximizing the OECT signal, noise has been mostly ignored, although it determines the resolution of the sensor. The major contribution to the noise in sensing devices is the 1/f noise, dominant at low frequency. In this work, we demonstrate that the 1/f noise in OECTs follows a charge-noise model, which reveals that the noise is due to charge fuctuations in proximity or within the bulk of the channel material. We present the noise scaling behavior with gate voltage, channel dimensions and polymer thickness. Our results suggest the …
Tetrathiafulvalene-based molecular nanowires.
A new molecular wire suitably functionalized with sulfur atoms at terminal positions and endowed with a central redox active TTF unit has been synthesized and inserted within two atomic-sized Au electrodes; electrical transport measurements have been performed in STM and MCBJ set-ups in a liquid environment and reveal conductance values around 10(-2) G0 for a single molecule.