Robust digital optimal control on IBM quantum computers
The ability of pulse-shaping devices to generate accurately quantum optimal control is a strong limitation to the development of quantum technologies. We propose and demonstrate a systematic procedure to design robust digital control processes adapted to such experimental constraints. We show to what extent this digital pulse can be obtained from its continuous-time counterpart. A remarkable efficiency can be achieved even for a limited number of pulse parameters. We experimentally implement the protocols on IBM quantum computers for a single qubit, obtaining an optimal robust transfer in a time T = 382 ns.