0000000000379895
AUTHOR
Philipp Rieder
Removing Leakage and Surface Recombination in Planar Perovskite Solar Cells
Thin-film solar cells suffer from various types of recombination, of which leakage current usually dominates at lower voltages. Herein, we demonstrate first a three-order reduction of the shunt loss mechanism in planar methylammonium lead iodide perovskite solar cells by replacing the commonly used hole transport layer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) with a better hole-selective polyarylamine. As a result, these cells exhibit superior operation under reduced light conditions, which we demonstrate for the extreme case of moonlight irradiance, at which open-circuit voltages of 530 mV can still be obtained. By the shunt removal we also observe the VOC to dro…
Efficient Monolithic Perovskite/Perovskite Tandem Solar Cells
Thin-film solar cells suffer from various types of recombination, of which leakage current usually dominates at lower voltages. Herein, we demonstrate first a three-order reduction of the shunt loss mechanism in planar methylammonium lead iodide perovskite solar cells by replacing the commonly used hole transport layer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) with a better hole-selective polyarylamine. As a result, these cells exhibit superior operation under reduced light conditions, which we demonstrate for the extreme case of moonlight irradiance, at which open-circuit voltages of 530 mV can still be obtained. By the shunt removal we also observe the VOC to dro…