0000000000380130
AUTHOR
Gancho Tachev
Better numerical approximation by Durrmeyer type operators
The main object of this paper is to construct new Durrmeyer type operators which have better features than the classical one. Some results concerning the rate of convergence and asymptotic formulas of the new operator are given. Finally, the theoretical results are analyzed by numerical examples.
Yet Another New Variant of Szász–Mirakyan Operator
In this paper, we construct a new variant of the classical Szász–Mirakyan operators, Mn, which fixes the functions 1 and eax,x≥0,a∈R. For these operators, we provide a quantitative Voronovskaya-type result. The uniform weighted convergence of Mn and a direct quantitative estimate are obtained. The symmetry of the properties of the classical Szász–Mirakyan operator and of the properties of the new sequence is investigated. Our results improve and extend similar ones on this topic, established in the last decade by many authors.