0000000000380625

AUTHOR

Prashant K. Jain

0000-0002-7306-3972

showing 3 related works from this author

Quantitative analysis of localized surface plasmons based on molecular probing

2010

International audience; We report on the quantitative characterization of the plasmonic optical near-field of a single silver nanoparticle. Our approach relies on nanoscale molecular molding of the confined electromagnetic field by photoactivated molecules. We were able to directly image the dipolar profile of the near-field distribution with a resolution better than 10 nm and to quantify the near-field depth and its enhancement factor. A single nanoparticle spectral signature was also assessed. This quantitative characterization constitutes a prerequisite for developing nanophotonic applications.

Materials scienceNanophotonicsGeneral Physics and AstronomyNanoparticlePhysics::OpticsNanotechnologynanoscale photopolymerization02 engineering and technology010402 general chemistry01 natural sciencesSilver nanoparticlenear-field opticsGeneral Materials Sciencemolecular probesPlasmonComputingMilieux_MISCELLANEOUSSpectral signaturelocalized surface plasmonquantitative analysisNear-field opticsGeneral Engineering[CHIM.MATE]Chemical Sciences/Material chemistry021001 nanoscience & nanotechnology0104 chemical sciencesCharacterization (materials science)[ CHIM.POLY ] Chemical Sciences/Polymers[CHIM.POLY]Chemical Sciences/Polymers[ CHIM.MATE ] Chemical Sciences/Material chemistry[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic0210 nano-technologyLocalized surface plasmon
researchProduct

Roadmap on quantum nanotechnologies

2021

Quantum phenomena are typically observable at length and time scales smaller than those of our everyday experience, often involving individual particles or excitations. The past few decades have seen a revolution in the ability to structure matter at the nanoscale, and experiments at the single particle level have become commonplace. This has opened wide new avenues for exploring and harnessing quantum mechanical effects in condensed matter. These quantum phenomena, in turn, have the potential to revolutionize the way we communicate, compute and probe the nanoscale world. Here, we review developments in key areas of quantum research in light of the nanotechnologies that enable them, with a …

Materials scienceFOS: Physical sciencesBioengineeringnanotekniikka02 engineering and technology01 natural sciencesnanotieteet530quantum computingEveryday experience0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)Quantum metrologyquantum electrodynamicsGeneral Materials Scienceddc:530kvanttimekaniikkaElectrical and Electronic Engineering010306 general physicsQuantum information sciencekvanttifysiikkaQuantumQuantum tunnellingQuantum computerQuantum PhysicsnanotechnologyCondensed Matter - Mesoscale and Nanoscale PhysicsMechanical EngineeringMacroscopic quantum phenomenaObservableGeneral Chemistry021001 nanoscience & nanotechnology530 PhysikEngineering physicsquantum phenomena3. Good healthMechanics of Materials0210 nano-technologyQuantum Physics (quant-ph)Nanotechnology
researchProduct

Off-Resonant Optical Excitation of Gold Nanorods: Nanoscale Imprint of Polarization Surface Charge Distribution

2011

International audience; We report on the nanoscale optical characterization of gold nanorods irradiated out of their plasmonic resonance. Our approach is based on the reticulation of a photopolymerizable formulation locally triggered by enhanced electromagnetic fields. The tiny local field enhancement stems from the surface polarization charges associated with the electric field discontinuity at the metal/dielectric interface. This allows us to get a nanoscale signature of the spatial distribution of the surface charge density in metallic nanoparticles irradiated off-resonance.

Materials sciencesurface charge densityAnalytical chemistryPhysics::Optics02 engineering and technologyDielectric010402 general chemistry01 natural sciencesplasmonicspolymer cross-linkingElectric fieldoptical properties of metal nanoparticlesGeneral Materials ScienceSurface chargePhysical and Theoretical ChemistryPolarization (electrochemistry)ComputingMilieux_MISCELLANEOUSPlasmonbusiness.industryCharge density[CHIM.MATE]Chemical Sciences/Material chemistry021001 nanoscience & nanotechnology0104 chemical sciences[ CHIM.POLY ] Chemical Sciences/Polymers[CHIM.POLY]Chemical Sciences/Polymers[ CHIM.MATE ] Chemical Sciences/Material chemistrypolymerizationOptoelectronicsNanorodnanorods0210 nano-technologybusinessExcitationThe Journal of Physical Chemistry Letters
researchProduct