0000000000380649

AUTHOR

Jens Eisert

showing 2 related works from this author

The classical two-dimensional Heisenberg model revisited: An $SU(2)$-symmetric tensor network study

2021

The classical Heisenberg model in two spatial dimensions constitutes one of the most paradigmatic spin models, taking an important role in statistical and condensed matter physics to understand magnetism. Still, despite its paradigmatic character and the widely accepted ban of a (continuous) spontaneous symmetry breaking, controversies remain whether the model exhibits a phase transition at finite temperature. Importantly, the model can be interpreted as a lattice discretization of the $O(3)$ non-linear sigma model in $1+1$ dimensions, one of the simplest quantum field theories encompassing crucial features of celebrated higher-dimensional ones (like quantum chromodynamics in $3+1$ dimensio…

Sigma modelSpontaneous symmetry breakingQC1-999Lattice (group)General Physics and AstronomyFOS: Physical sciencesClassical Heisenberg modelQuantum Materials53001 natural sciences010305 fluids & plasmasTheoretical physicsHigh Energy Physics - Lattice0103 physical sciencesSymmetric tensorTensorQuantum field theory010306 general physicsclassical Heisenberg modelCondensed Matter - Statistical MechanicsPhysicsQuantum PhysicsStatistical Mechanics (cond-mat.stat-mech)Heisenberg modelPhysics500 Naturwissenschaften und Mathematik::530 Physik::530 PhysikHigh Energy Physics - Lattice (hep-lat)magnetismstatistical and condensed matter physicsQuantum Physics (quant-ph)
researchProduct

Tensor Network Annealing Algorithm for Two-Dimensional Thermal States

2019

Tensor network methods have become a powerful class of tools to capture strongly correlated matter, but methods to capture the experimentally ubiquitous family of models at finite temperature beyond one spatial dimension are largely lacking. We introduce a tensor network algorithm able to simulate thermal states of two-dimensional quantum lattice systems in the thermodynamic limit. The method develops instances of projected entangled pair states and projected entangled pair operators for this purpose. It is the key feature of this algorithm to resemble the cooling down of the system from an infinite temperature state until it reaches the desired finite-temperature regime. As a benchmark we …

PhysicsOptical latticeQuantum PhysicsStrongly Correlated Electrons (cond-mat.str-el)General Physics and AstronomyQuantum simulatortensor network methodsFOS: Physical sciences01 natural sciencesSquare latticequantum statistical mechanicsCondensed Matter - Strongly Correlated ElectronsExact solutions in general relativityquantum information0103 physical sciencesThermodynamic limit539strongly correlated systemsIsing modelQuantum information010306 general physicsQuantum statistical mechanicsQuantum Physics (quant-ph)Algorithmquantum simulationPhysical Review Letters
researchProduct