0000000000380820
AUTHOR
Giammona
Hyaluronic acid based nanohydrogels fabricated by microfluidics for the potential targeted release of Imatinib: Characterization and preliminary evaluation of the antiangiogenic effect
Abstract Microfluidics is emerging as an innovative technique for the “on chip” fabrication of nanoparticles for drug delivery applications. Here, by using an amphiphilic derivative of hyaluronic acid as a starting macromolecule, nanohydrogels loaded with Imatinib were produced by the microfluidic procedure in order to develop an innovative therapeutic tool for the treatment of retinal neovascularization. Both cyRGDC functionalized and non-functionalized nanohydrogels were designed and fabricated by using the same technique. The targeting efficiency of the obtained nanosystems was studied in vitro on human retinal pigment epithelial cells (HRPEpiC) and human umbilical vein endothelial cells…
Production and physicochemical characterization of a new amine derivative of gellan gum and rheological study of derived hydrogels
The production of an amine derivative of gellan gum, named GG-EDA, was here obtained by functionalizing the polysaccharide backbone with pendant ethylenediamine moieties. The obtained derivative was characterized by spectroscopic, colorimetric, chromatographic and rheological analyses to study the effect of the free amino groups on the physicochemical properties of the macromolecule. A titration experiment was conducted to study the acid-base dissociation constants in aqueous media for the carboxylic and amino groups in the GG-EDA and to shed light on the possibility that the derivative shows a polyampholyte structure under physiological conditions. The rheological analysis conducted on bot…
Folic acid-functionalized graphene oxide nanosheets via plasma etching as a platform to combine NIR anticancer phototherapy and targeted drug delivery.
PEGylated graphene oxide (GO) has shown potential as NIR converting agent to produce local heat useful in breast cancer therapy, since its suitable photothermal conversion, high stability in physiological fluids, biocompatibility and huge specific surface. GO is an appealing nanomaterial for potential clinical applications combining drug delivery and photothermal therapy in a single nano-device capable of specifically targeting breast cancer cells. However, native GO sheets have large dimensions (0.5-5 mu m) such that tumor accumulation after a systemic administration is usually precluded. Herein, we report a step-by-step synthesis of folic acid-functionalized PEGylated GO, henceforth named…
Synthesis and characterization of redox-sensitive polyurethanes based on L-glutathione oxidized and poly(ether ester) triblock copolymers
Abstract Segmented polyurethanes, based on PCL-PEG-PCL copolymers, 1,4-diisocyanatobutane and l -glutathione oxidized, used as chain extender, were synthetized. Three different reactions conditions were investigated using three different copolymers having ɛ-CL/polyethylene glycol molar ratios equal to 12, 24 and 36 and three different reaction conditions. As investigated by size exclusion chromatography analyses and quantification of l -glutathione, the polymerization and the extension phase's efficiency depended on the ɛ-CL/PEG ratio and the extension phase's operating temperature. Three selected polyurethanes were characterized by spectroscopic, differential scanning calorimetry (DSC) and…
Gellan gum-based delivery systems of therapeutic agents and cells.
The purpose of this review is to make a summary of high quality research trends using gellan gum (GG) as a polymeric constituent for the design of innovative drug delivery systems and devices for biomedical applications, such as cell therapy and regenerative medicine. The use of gellan gum is described both in its native form and as chemically functionalized derivatives or physically mixed with natural or synthetic materials. Starting from a systematic study of recent research works, the main properties of the native polysaccharide have been highlighted and therefore some improvements have been focused thanks to the design of chemically functionalized derivatives and the use of composite ma…