0000000000381053

AUTHOR

Christopher T. Esapa

Dystroglycan regulates structure, proliferation and differentiation of neuroepithelial cells in the developing vertebrate CNS.

AbstractIn the developing CNS α- and β-dystroglycan are highly concentrated in the endfeet of radial neuroepithelial cells at the contact site to the basal lamina. We show that injection of anti-dystroglycan Fab fragments, knockdown of dystroglycan using RNAi, and overexpression of a dominant-negative dystroglycan protein by microelectroporation in neuroepithelial cells of the chick retina and optic tectum in vivo leads to the loss of their radial morphology, to hyperproliferation, to an increased number of postmitotic neurons, and to an altered distribution of several basally concentrated proteins. Moreover, these treatments also altered the oriented growth of axons from retinal ganglion c…

research product

The effects of post-translational processing on dystroglycan synthesis and trafficking1

Dystroglycan is a component of the dystrophin glycoprotein complex that is cleaved into two polypeptides by an unidentified protease. To determine the role of post-translational processing on dystroglycan synthesis and trafficking we expressed the dystroglycan precursor and mutants thereof in a heterologous system. A point mutant in the processing site, S655A, prevented proteolytic cleavage but had no effect upon the surface localisation of dystroglycan. Mutation of two N-linked glycosylation sites that flank the cleavage site inhibited proteolytic processing of the precursor. Furthermore, chemical inhibition of N- and O-linked glycosylation interfered with the processing of the precursor a…

research product