0000000000381057

AUTHOR

Ji-yu Feng

showing 2 related works from this author

Atomic layer deposition of ternary ruthenates by combining metalorganic precursors with RuO4 as the co-reactant

2022

In this work, the use of ruthenium tetroxide (RuO4) as a co-reactant for atomic layer deposition (ALD) is reported. The role of RuO4 as a co-reactant is twofold: it acts both as an oxidizing agent and as a Ru source. It is demonstrated that ALD of a ternary Ru-containing metal oxide (i.e. a metal ruthenate) can be achieved by combining a metalorganic precursor with RuO4 in a two-step process. RuO4 is proposed to combust the organic ligands of the adsorbed precursor molecules while also binding RuO2 to the surface. As a proof of concept two metal ruthenate processes are developed: one for aluminum ruthenate, by combining trimethylaluminum (TMA) with RuO4; and one for platinum ruthenate, by c…

Materials scienceHydrogenRUTHENIUMOXIDE THIN-FILMSDIFFUSION BARRIERInorganic chemistryOxidechemistry.chemical_elementAmorphous solidInorganic ChemistryChemistryAtomic layer depositionchemistry.chemical_compoundPhysics and AstronomychemistryALUMINUM-OXIDEOxidizing agentThin filmPlatinumTernary operationDalton Transactions
researchProduct

The co-reactant role during plasma enhanced atomic layer deposition of palladium

2020

Atomic layer deposition (ALD) of noble metals is an attractive technology potentially applied in nanoelectronics and catalysis. Unlike the combustion-like mechanism shown by other noble metal ALD processes, the main palladium (Pd) ALD process using palladium(ii)hexafluoroacetylacetonate [Pd(hfac)2] as precursor is based on true reducing surface chemistry. In this work, a thorough investigation of plasma-enhanced Pd ALD is carried out by employing this precursor with different plasmas (H2*, NH3*, O2*) and plasma sequences (H2* + O2*, O2* + H2*) as co-reactants at varying temperatures, providing insights in the co-reactant and temperature dependence of the Pd growth per cycle (GPC). At all te…

Materials scienceHydrogenAnnealing (metallurgy)Inorganic chemistryGeneral Physics and Astronomychemistry.chemical_element02 engineering and technologyengineering.material010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesCatalysisAtomic layer depositionchemistryX-ray photoelectron spectroscopyImpurityengineeringNoble metalPhysical and Theoretical Chemistry0210 nano-technologyPalladiumPhysical Chemistry Chemical Physics
researchProduct