0000000000381289
AUTHOR
José Luis Arias
Proteoglycan occurrence in gastrolith of the crayfish Cherax quadricarinatus (Malacostraca: Decapoda).
14 pages; International audience; Biomineralized structures are hybrid composites formed and stabilized by the close interaction of the organic and the inorganic phases. Crayfish are good models for studying biomineralization because they develop, in a molting-mineralization cycle, semi-spherical mineralized structures referred to as gastroliths. The organic matrix of these structures consists of proteins, polysaccharides, and lipids. Chitin is the main polysaccharide and is concentrically arranged as fibrous chitin-protein lamellar structures. Although several proteins and low-molecular weight phosphorylated components have been reported to be involved in gastrolith mineralization, the occ…
Comparative ultrastructure and carbohydrate composition of gastroliths from Astacidae, Cambaridae and Parastacidae freshwater crayfish (Crustacea, Decapoda)
21 pages; International audience; Crustaceans have to cyclically replace their rigid exoskeleton in order to grow. Most of them harden this skeleton by a calcification process. Some decapods (land crabs, lobsters and crayfish) elaborate calcium storage structures as a reservoir of calcium ions in their stomach wall, as so-called gastroliths. For a better understanding of the cyclic elaboration of these calcium deposits, we studied the ultrastructure of gastroliths from freshwater crayfish by using a combination of microscopic and physical techniques. Because sugars are also molecules putatively involved in the elaboration process of these biomineralizations, we also determined their carbohy…
Characterization of crustacyanin-A2 subunit as a component of the organic matrix of gastroliths from the crayfish Cherax quadricarinatus.
AbstractLike the lobsters, some terrestrial crabs and other crayfishes, the Australian red claw crayfish, Cherax quadricarinatus, elaborates in its stomach wall calcium storage structures called gastroliths. For understanding the cyclic elaboration and stabilization of these amorphous calcified structures, we studied the organic matrix (OM) of these paired biomineralizations. After decalcification with acetic acid, we analysed the proteinaceous components of an acetic acid-insoluble fraction by two-dimensional electrophoresis. Nine spots were digested by trpsin and the tryptic peptides were sequenced by nanoLC-nanoESI-MS/MS mass spectrometry. About 100 peptidic sequences were compared to se…