0000000000381453
AUTHOR
Christian Omlin
Reinforcement Learning Your Way: Agent Characterization through Policy Regularization
The increased complexity of state-of-the-art reinforcement learning (RL) algorithms has resulted in an opacity that inhibits explainability and understanding. This has led to the development of several post hoc explainability methods that aim to extract information from learned policies, thus aiding explainability. These methods rely on empirical observations of the policy, and thus aim to generalize a characterization of agents’ behaviour. In this study, we have instead developed a method to imbue agents’ policies with a characteristic behaviour through regularization of their objective functions. Our method guides the agents’ behaviour during learning, which results in a…
Explainable AI (XAI): A Systematic Meta-Survey of Current Challenges and Future Opportunities
The past decade has seen significant progress in artificial intelligence (AI), which has resulted in algorithms being adopted for resolving a variety of problems. However, this success has been met by increasing model complexity and employing black-box AI models that lack transparency. In response to this need, Explainable AI (XAI) has been proposed to make AI more transparent and thus advance the adoption of AI in critical domains. Although there are several reviews of XAI topics in the literature that identified challenges and potential research directions in XAI, these challenges and research directions are scattered. This study, hence, presents a systematic meta-survey for challenges an…