0000000000381536
AUTHOR
Stefan J. Lindinger
Arm swing during skating at different skiing speeds affects skiing mechanics and performance
Arm swing has been shown to lead to greater maximal speed and movement economy in cross -country skiing. The current study aimed to investigate how arm swing alters skiing mechanics and contributes to performance and acceleration of the athlete’s centre of mass (COM). While skiing on snow seven highly skilled cross -country skiers simulated V2 -alternate skating without using ski poles and with double or single arm swing and without arm swing . During leg push -off the linear momentum of the body increased due to arm swing. Simultaneously, linear momentum of the arm(s) decreased in arm swing trials, indicating a transfer of momentum from arms to the rest of the body and being more prevalent…
Effect of Sitting Posture on Sit-Skiing Economy in Non-disabled Athletes
This study focused on resolving the differences in economy between two common sit-skiing postures used by disabled athletes, suspected to be the most and least effective. Ten experienced non-disabled male cross-country skiers went through an incremental testing protocol with an ergometer simulating double poling in two sitting postures “kneeing” and “knee-high.” The protocol consisted of 3 × 4 min steady-state stages (13, 22, and 34% of maximal sprint power output). Subjects' respiratory gases and heart rate were measured and blood lactate concentrations were determined. In addition, pulling forces and motion capture recordings were collected. Oxygen consumption was 15.5% (p < 0.01) higher …
Changes in biomechanics of skiing at maximal velocity caused by simulated 20 km skiing race using V2 skating technique
This study investigated how the fatigue caused by a 20-km simulated skating cross-country skiing race on snow affects the final spurt performance from a biomechanical perspective. Subjects performed a 100-m maximal skiing trial before and at the end of the simulated race. Cycle characteristics, ground reaction forces from skis and poles, and muscle activity from eight muscles were recorded during each trial. Results showed that subjects were in a fatigued state after the simulated race manifested by 11.6% lower skiing speed (P<.01). The lower skiing speed was related to an 8.0% decrease in cycle rate (P<.01), whereas cycle length was slightly decreased (tendency). In temporal patterns, rela…