0000000000382904

AUTHOR

S. Baroni

Abstract A18: miR-9 and miR-200 regulate PDGFRβ-mediated endothelial differentiation of neoplastic cells in triple-negative breast cancer

Abstract Tumor vascularization is a fundamental step in solid tumor progression and is orchestrated by different pathways of vasculogenesis. In malignant tumors, neoplastic cells can differentiate into endothelial-like cells acquiring the expression of endothelial markers (i.e. CD31 and CD34) and participating in the formation of vascular-like structures that functionally deliver oxygen and nutrients to the tumor site. We recently identified PDGFRβ as an important player of this process in triple negative breast cancer (TNBC). Interestingly, increasing evidence supported a connection between PDGFRβ and epithelial to mesenchymal transition (EMT), important step for the endothelial trans-diff…

research product

miR-9 and miR-200 regulate PDGFRβ-mediated endothelial differentiation of tumor cells in triple-negative breast cancer

Abstract Organization of cancer cells into endothelial-like cell-lined structures to support neovascularization and to fuel solid tumors is a hallmark of progression and poor outcome. In triple-negative breast cancer (TNBC), PDGFRβ has been identified as a key player of this process and is considered a promising target for breast cancer therapy. Thus, we aimed at investigating the role of miRNAs as a therapeutic approach to inhibit PDGFRβ-mediated vasculogenic properties of TNBC, focusing on miR-9 and miR-200. In MDA-MB-231 and MDA-MB-157 TNBC cell lines, miR-9 and miR-200 promoted and inhibited, respectively, the formation of vascular-like structures in vitro. Induction of endogenous miR-9…

research product

Superfluid properties of the inner crust of neutron stars

We investigated the superfluid properties of the inner crust of neutron stars, solving the Hartree-FockBogoliubov equations in spherical Wigner-Seitz cells. Using realistic two-body interactions in the pairing channel, we studied in detail the Cooper-pair and the pairing-field spatial properties, together with the effect of the proton clusters on the neutron pairing gap. Calculations with effective pairing interactions are also presented, showing significant discrepancies with the results obtained with realistic pairing forces. At variance with recent studies on finite nuclei, the neutron coherence length is found to depend on the strength of the pairing interaction, even inside the nucleus…

research product